NSW Planning & Environment
TAILINGS MANAGEMENT WORKSHOP
10 April 2019, Dubbo, NSW

Professor David Williams
Director, Geotechnical Engineering Centre
Manager, Large Open Pit Project
The University of Queensland, Brisbane, Australia
Email: D.Williams@uq.edu.au
A Moment of Reflection

B1 - CAM1 - Barragem
LEADING PRACTICE TAILINGS MANAGEMENT

Constraints
Cost driver for conventional tailings management
Deposition processes
Tailings dam failures
Guidelines
Good tailings management
Constraints Under Which TSFs Must Operate – Surface and In-Pit TSFs

- Climatic, topographic and seismic setting
- Nature of tailings, particularly presence of clay minerals
- Tailings production rate that must be stored and % solids at which they are deposited
- Need to manage, store, and recycle when possible, supernatant tailings water
- Need to meet discharge water quality licence conditions
- Need to rehabilitate TSF on closure to achieve agreed completion criteria, and land use or ecological function

Good water management is usually key to good tailings management
Constraints Under Which TSFs Must Operate – Surface TSFs

- Dam foundation conditions, and availability and suitability of borrow materials
- Need to maximise tailings settled dry density, and hence minimise wall raising and volume of tailings stored
- Desirability or need to facilitate upstream raising, where appropriate
- Risk of a spill of water and/or tailings

People, infrastructure and environment downstream key
Constraints Under Which TSFs Must Operate – In-Pit TSFs

- High rate of rise due to small footprint, particularly initially
- Difficulty of removing water
- Poor tailings settled density
- Risk of over-topping by water

Potentially difficult to rehabilitate
Conventional Tailings Disposal and Storage

Commonly held perception, supported by NPV approach, is that transporting tailings as a slurry to a dam is most economic

- Dewatering tailings to a paste or by filtration is perceived to be too expensive.
- Reduced storage volume occupied by tailings paste or filter cake, and relative ease of capping are discounted, as is potential for a higher level future land use.
- Cost of rehabilitating resulting soft and wet tailings is discounted and not considered to be significant.
- Few TSFs have been rehabilitated, due to difficulty and expense of capping “slurry-like” tailings, particularly at a time when mine is no longer producing revenue.
Relative Cost Comparison of Tailings Storage Alternatives

High cost of Dams in flat terrain

20-year coal mine in relatively flat terrain

NET PRESENT COST ($M)

Surface TSFs In-Pit TSF On-Off Surface TSF Pressure Filtration Surface TSF then In-Pit

High cost of Rehab High cost of re-handling High CapEx Balancing Dam & Rehab Costs

Discount Factor = 2.5% Discount Factor = 5% Discount Factor = 10%
Conventional Tailings Disposal and Storage in a Dam

- Tailings slurry containment and method of construction and dam raising varies from region to region:
 - **Upstream construction**, using tailings where possible, is widely employed in South Africa, Australia and the south-west of the USA, which share a dry climate
 - **Downstream construction** is employed in wet/seismic regions
 - **Sand dams**, cycloned and/or compacted, are widely employed in South America, usually raised by centreline method
 - **Roller compacted concrete** dams are finding favour for high tailings dams in deep valleys of Andes in South America

While necessity for downstream construction is understandable in wet/seismic regions, choice between upstream construction and sand dams is not so obvious – More a function of “what we’ve always done”
Tailings Continuum (adapted from Davies and Rice, 2004)

Optimum for disposal to a surface TSF is likely to be thickened, otherwise filtered.
Consistency of Tailings

- High density slurry
- High slump paste
- Low slump paste
- Centrifuged (wet cake)
- Filtered (dry cake)
Sub-Aerial Tailings Deposition Processes

- **Beaching** – *Best assessed in field*
- **Hydraulic sorting** down beach according to particle size and specific gravity – *Best assessed in field*
- **Settling** – *Very large strain*
 - *Little shear strength*
- **Consolidation** – *Large strain*
 - *Large shear strength gain*
- **Desiccation** on exposure to sun and wind – *Minor strain, significant shear strength gain*
- **Loading** by upstream raise and/or a cover:
 - *Could cause bow-waving failure*
 - *Best loaded progressively on a broad front to avoid failure*
 - *Will result in shear strength gain over time*
Ongoing Tailings Dam Failures

• Average tailings dam failure rate over last 100 years is 1.2% or 2.2/year, >2 orders of magnitude higher than that for water retention dams of 0.01% – *Acceptable?*

• Focus is on failures that occur in *developed countries* (e.g., Mount Polley, Canada in 2014; Cadia, Australia in 2018) or that involve *global mining companies* (e.g., Samarco [BHP Billiton/Vale joint ownership], Brazil in 2015; Brumadinho [Vale], Brazil in 2019)

Recent, high profile tailings dam failures are threatening mining industry’s financial and “social licences to operate” and threatening industry’s control of its destiny!
Guidelines and Standards – Operation to Post-Closure (in Perpetuity) Design

• **ANCOLD (2012) Guidelines on Tailings Dams** – Planning, Design, Construction, Operation and Closure is de facto standard for tailings dams:

 – Post-Closure Annual Exceedance Probability (AEP; up to 1:10,000) may be 10- to 100-fold higher than Operational AEP, depending on Consequence Category

 – Australia has <200 years of earthquake data and is of low seismicity, hence a lack of earthquake data – A 1:10,000 earthquake for Australia is likely to be ≈ 1:100 for San Francisco!

 – A dam designed for an Operational AEP of 1:100 or 1:1,000 may be difficult (and expensive) to retrofit for a Post-Closure (in perpetuity) AEP of 1:10,000

 – **Post-closure Factor of Safety (FoS) of 1.5 may be > Operation FoS of > 1.3** – A dam designed for an Operational FoS of 1.3 may be difficult (and expensive) to retrofit for a Post-Closure FoS of 1.5
Findings:

- Some corporate documents were found to be comprehensive, with examples of good practice.
- Majority of ICMM member companies have corporate documents that substantially follow good practice.
- A minority of ICMM member companies either have corporate guidance documents or adopt a surrogate that partly follows good practice; hence most member companies either conform or partly conform to good practice.
ICMM Golder Review of Tailings Management Guidelines, Dec 2016

• **Recommendations:**
 – TSF *classification* based on consequences of failure, with commensurate safety standards
 – Have a formal *change management* process for life-of-facility
 – Have prescriptions for formal *communication* between Engineer of Record and operators and owners to transfer and confirm shared understanding of intent and constraints of TSF design and operation
 – Undertake formal *risk assessment* for TSF by suitably-qualified persons and ensure that mitigation measures arising are embedded into design, life-of-facility plan and operating manual
 – *Independent review* by suitably qualified and experienced professionals
• **Coverage:**
 - Sustainable development & tailings
 - Life-of-mine risk-based approach
 - Tailings disposal & storage
 - Planning & design
 - Construction
 - Operation
 - Rehabilitation & aftercare
 - Future directions
Good Tailings Management

- **Divert** clean rainfall runoff around TSF
- **Discharge** tailings as thick as can be effectively managed
- **Spigot** tailings in thin layers and cycle deposition
- Maintain a **small decant pond** to maximise dewatering, desiccation, densification and strengthening of tailings
- Ideally, have **separate evaporation or tailings water storage ponds**
- However, potentially acid forming (PAF) and otherwise potentially contaminating tailings may benefit from being kept under water, which would restrict desiccation
- **Move towards** tailings minimisation, dewatering and integrated disposal with waste rock
Good Tailings Management

Spigot in thin lifts

Maintain a small decant pond
KEY LIFE-CYCLE TAILINGS MANAGEMENT RISKS

Risk of tailings liquefaction
Risk assessment
Tailings security deposit
Closure from geotechnical and cost perspectives
Financial impacts of tailings dam failures
Way Forward

• Risk assessments of tailings dams are common-place
• Defining what is an “acceptable” risk level is difficult
• Ongoing rate of tailings dam failures is unacceptable
• Approaches to tailings management need to improve
• Tailings minimisation & dewatering need to be pursued
• Design, construction, operation and closure of tailings dams and facilities needs greater reliability and resilience
• Monitoring and interpretation of tailings dams needs to be more comprehensive, and in real-time, linked to triggers:
 – Green, for safe operation
 – Amber, requiring assessment by a Geotechnical Engineer
 – Red, initiating Emergency Response Plan
Risk of Tailings Liquefaction

• Risk of earthquake-induced liquefaction:
 – Fine-grained sandy or silty sand tailings – √
 – Loose (contractive, brittle) state – √
 – Near-saturated – √
 – Earthquake magnitude > 5.5 and peak ground acceleration >0.13g – ?

• Risk of static or flow liquefaction, triggered by:
 – Loss of containment due to dam instability
 – Overtopping and erosion of dam
 – Pore water pressure increase due to dam raise
 – Rise in phreatic surface due to heavy rainfall or fresh tailings

 Susceptible tailings can behave in an undrained, contractive, strain-softening manner, and liquefy or flow
Risk of Tailings Liquefaction

• However, tailings state (loose or dense) *in situ* is difficult to determine, particularly if tailings are loose:
 – They can’t be sampled
 – CPT data plot in bottom left-hand corner of chart, where few correlation data exist
 – Some use of SPT
 – Some use of “simple shear” testing, but samples may not represent *in situ* state

In absence of laboratory test data, post-liquefaction shear strength may be estimated based on correlations between liquefaction case histories (notably mainly in natural soils) and CPT cone resistance
Geotechnical Closure Risks and Challenges for TSFs

• TSFs:
 – Dam geotechnical instability – Tailings are expected to drain down on cessation of deposition, but may be recharged by high rainfall if this is not discharged via a spillway
 – Dam erosional instability, particularly in a dry climate if slope is flattened and topsoiled
 – Differential settlement, affecting slope profile and drainage
 – Poorer water quality (saline, and/or acidic, or alkaline), after a lag:
 • Ponded water, and runoff leading to ponding below dump
 • Emerging at low points around toe
 • Infiltrating to groundwater resource

Few TSFs have been successfully rehabilitated, with reprocessing and in-pit disposal increasingly being considered
Regulatory Requirements

• Resources Industry’s social and financial licences to operate are under increasing and high threat

• There is a risk that industry’s control will be taken away due to a “lack of trust”, arising from past poor performance

• Everyone brings “bias” to a discussion, discouraging innovation and improvement

• (Progressive) Mine Closure needs to genuinely be front of mind from Planning, throughout Operations, to Rehabilitation and ongoing Maintenance

• A range of Government Departments should be engaged, depending on post-closure land use and/or function

• Governments are moving to have Rehabilitation Bank Guarantee amounts paid to them for abandoned sites
Tailings Security Deposit

- Queensland and NSW indicative costs for reshaping, capping/sealing tailings are:
 - $170,000/ha for tailings likely to present considerable difficulties due to reactive and/or soft tailings.
 - $108,000/ha for tailings likely to present moderate difficulties due to reactive and/or soft tailings.
 - $81,000/ha for benign and strong tailings.

- Plus land preparation and revegetation, and maintenance

 Total Security Deposit from $85,300 to $215,000/ha

- Actual cost could be far less, under favourable conditions

- A Bank Guarantee would cost ~1.5 to 3% pa of Security Deposit, possibly based on an over-estimate of actual costs, and could continue in perpetuity
Divergent Perceptions of Rehab. Cost over Time ($100 M Base Cost)

Which approach is more realistic of actual rehabilitation costs delayed over time?
Early Impact of Brumadinho Tailings Dam Failure on Share Prices

Vale down initially 25.9%, recovering to 16.3% down

BHP up 15.1% since 25 January 2019

Rio Tinto up 18.2% since 25 January 2019

Fortescue up 34.4% since 25 January 2019

Market Capitalisation of all Iron Ore producers remained about same!
Impact on Iron Ore Price (62% Fe in USD)

Up 24.2%, retreating to 16.2% up, since 25 January 2019

SOURCE: TRADINGECONOMICS.COM | OTC
Failure on a soft glacial clay foundation layer, leading to overtopping and erosion.
Fate of Imperial Metals

Mount Polley Tailings dam failure

Newcrest buys 70% of Imperial’s Red Chris Mine

1.98 CAD Mar 8, 2019
Imperial on Brink of Bankruptcy

https://thenarwhal.ca/what-happens-if-imperial-metals-goes-bankrupt/

- Imperial Metals’ share price dropped from a peak of almost CAN14 in early 2014 to CAN1.05 in late 2018
- Imperial Metals is currently surviving on debt, with CAN75M/year in interest payments, covered by shares offered to creditors
- Failure clean-up cost CAN67.4M, not counting 12 months lost production
- Environmental liabilities costed at CAN173.6M have been discounted to CAN100.9M, with only CAN14.3M cash secured in reclamation deposits
- An estimated CAN86.3M is expected to be spent on reclamation between 2018 and 2046, leaving an undiscounted liability post 2046 of ~CAN100M
Cadia Tailings Dam Failure
9 March 2018

Estimated time of failure: 7:00pm 9 March 2018

Initial backs scarp cracks – 9 March
Circular failure cracks first observed 9 March
Newcrest’s Share Price

- Cadia Tailings dam failure
- Newcrest buys 70% of Imperial’s Red Chris Mine
SOME EXAMPLES

“Apple skin” covers
Slope treatment
Capping surface and in-pit tailings
Some closure lessons
Performance of Covers in Australian Climate

Eroding rainfall-shedding cover

Robust store and release cover
Over-Dumping of Fines on Angle of Repose WRD Slope and Revegetating
Rock Covers on Flattened Mine Slopes

- Rock on sodic spoil at 3(H):1(V)
- Rock on TSF wall
Abandoned Capping of Smectitic In-Pit Coal Tailings at Wambo (~$1M/ha)

Anchored geotextile and geogrid

D2 Dozer for pushing CR

Abandoned capping
Capping Surface Coal TSF – New Acland, Queensland

Pushing initial 1 m coarse reject capping by D6 Swamp Dozer

Rise in water table & drainage Hydraulic fracturing Start of bow-waving
Successfully Capping Surface Coal TSF – New Acland ($60,000 to 80,000/ha)

Before capping – August 2009

During capping – April 2013

During capping – March 2014

Completed capping – December 2017
Wet Tailings – Hydraulic Placement OR End-Dumping of Coarse Material

Hydraulic placement

End-dumping

5 m
20 m
1% slope

COARSE REJECT - 1
COARSE REJECT - 2
COARSE REJECT - 3
Mixing Zone - 1
Mixing Zone - 2
Mixing Zone - 3
TAILINGS

SPOIL

Water table

1% slope
Successfully Capping In-Pit Coal Tailings – New Acland ($70,000 to 80,000/ha)

Before capping – March 2014

During capping – September 2016

During capping – February 2016

Completed capping – December 2017
TSF Perimeter Peat and Central Water Cover in Tasmania (Brett, 2011)
Successful Rehabilitation of 100 m High TSF Slope – San Manuel, AZ

During construction

Sandy alluvium only over upper third of slope

Crushed rock over sandy alluvium over lower two-thirds of slope

After 2 years

After 12 years
Some Closure Lessons

• Have a **clear closure aim** in harmony with surroundings, and plan and actively operate to facilitate this

• **Question NPV** applied to operation/closure costing

• **Environmental Conditions** pertain to operations (imposed due to mistrust that environment will be protected):
 – Not Closure Criteria
 – Zero discharge and sediment containment create legacies and are not feasible post-closure

• **Aim for mine lease relinquishment**:
 – Operations that facilitate this
 – A viable post-closure land use or ecological function
 – Rehabilitate in a way that facilities (not inhibits) future land use
 – Liaise with ultimate custodians of land, not just Regulators
Some Closure Lessons

• Question conventional “What we have always done” approach
• Take climate, topography, seismicity and nature of mining and processing wastes into account
• Treat mining and processing wastes as potential construction/rehabilitation materials, and segregate/stockpile suitable materials for future use
• Identify, segregate and encapsulate potentially contaminating wastes
Key Leading Practice (or Innovation in) Tailings Management

• Integrated waste rock and tailings disposal in one facility:
 – Using waste rock to form a substantial containment for tailings, preferably thickened or filtered
 – Co-disposal of tailings and coarse-grained wastes, by combined pumping or mechanical mixing

• Filtered tailings to enable dry stacking (and compaction, if desired)

• Combining filtered tailings and crushed or screened waste rock in a stack; e.g., GeoWaste

• Pit backfilling using co-disposed tailings and coarse-grained wastes

• Disposal of tailings in a way to facilitate rehabilitation and add value post-closure
Barriers to Implementation of Leading /Innovative Tailings Management

- NPV accounting and use of a high discount factor, which favours tailings management options that are cheap (particularly CapEx) in short-term, and delayed expenditure, which in turn are likely to exacerbate impacts and blow-out rehabilitation costs
- Perceived high costs, supported by NPV accounting, of alternative tailings management options, such as mechanical dewatering and co-disposal
- Perceived and real (e.g., high clay mineral content, and handling coarse-grained wastes) technical difficulties of mechanical dewatering and co-disposal
- Resistance to do other than what we have always done
- Uncertainty of new approaches