SAFETY BULLETIN

In-Service failures of explosion protected diesel engine systems during 2010 and 2011

BACKGROUND

Mine Safety has conducted an analysis of the in-service failure of the explosion protection characteristics of diesel engine systems (ExDES failures), as reported under clause 56(1)(m) of the NSW Coal Mine Health and Safety Regulation 2006. A report summarising the findings is available on the Department’s website at:

*Note: A copy of the report is also attached to the electronic version of this bulletin.

This bulletin provides an update on information provided in SB10-06, Failures of explosion protected diesel engine systems.

OUTCOMES

There has been an improvement in the reliability of ExDES’s over the last 2 years. During 2009 there were 345 reported incidents, in 2010 there were 269 and during 2011 there were 230 reported incidents. This is encouraging - assuming the proportion of reported incidents to actual incidents has not decreased.

The analysis revealed:

- The estimated annual probability of failure for each ExDES item was 23%.
- The estimated annual probability of failure for each Ex electrical item was 0.12%.
- Each underground coal mine ran a 1% probability that, at any moment, one of its ExDES’s had entered a non-explosion protected state since its last inspection.
- There was a 90% certainty that on 6 or more occasions, an ExDES with failed explosion protection characteristics was in-service somewhere at a mine during a reportable accumulation of methane.
- Pneumatic/hydraulic control system failures account for 59% of incidents, 55% of these were valve or sensor faults. Exhaust flametrap issues accounted for 49% of the other component failures.
- The top 5 failures were:
 - Control system – valve sensor fault (32%)
 - Control system – wrong settings (12%)
 - All fixed joints – bolts nuts & studs (10%)
 - Wet conditioner – sludge holding up floats (7%)
 - Control system – circuit contamination (7%)
SIGNIFICANCE OF FAILURES

Mechanical ExDES failure rates are unacceptable in view of contemporary engineering standards. Like Ex electrical equipment, explosion protected characteristics of an ExDES must have a very low probability of failure. There have been several mine explosions in history where a diesel engine may have been the source of ignition. The consequence of such a failure is potentially multiple fatalities.

There is a need to continue improving the reliability of explosion protection characteristics of diesel engines systems.

RECOMMENDATIONS

Designers and manufacturers should:

- Review the incidents that relate to their ExDES and provide design solutions, as applicable.
- Critically review and analyse the safety integrity of their shutdown systems and other components. Use electronic systems where reasonably practicable.
- Review and revise lifecycle inspection, testing and maintenance requirements on ExDES and provide information to all users.

Persons with management or control of ExDES’s should:

- Comply with OEM lifecycle recommendations in their maintenance management system.
- Use the relevant national competencies for the assessment of people maintaining and overhauling ExDES.

The Department will implement strategies to improve the reliability of ExDES, including:

- Improve the quality of data gathered by introducing an ancillary report form for all ExDES reported (56)(1)(m) incidents.
- Continue with the recognised service facility program for the overhaul of ExDES’s.
- Phase out all older ‘approved’ ExDES currently operating under exemption, by the end of 2013.
- Publish an update of statistics on an annual basis.
- Implement a program to improve the quality of the design, manufacture and supply of new ExDES consistent with the electrical Ex certification schemes (certificate of conformity) by 2016.

NOTE: Please ensure all relevant people in your organisation receive a copy of this Safety Bulletin, and are informed of its content and recommendations. This Safety Bulletin should be processed in a systematic manner through the mine’s information and communication process. It should also be placed on the mine’s notice board.

Signed

Rob Regan
DIRECTOR
MINE SAFETY OPERATIONS BRANCH
NSW TRADE AND INVESTMENT

Summary of reported incidents

In-Service Failure of Explosion-Protected Diesel Engine Systems (ExDES)

January 2010 - October 2011

Produced by Lyndon Hughes
1. **Background**

There have been several mine explosions in history where a diesel engine system (DES) may have been the source of ignition. The consequence of such a failure may be multiple fatalities, significant damage to the mine, consequent loss of production, employment and public confidence.

In order to minimise the risk of igniting potential methane atmospheres in underground coal mines, precautions are taken with diesel engines used in such workplaces. In NSW, diesel engine systems in underground coal mines are design registered, with the AS/NZS 3584 series of standards, *‘Diesel engine systems for underground coal mines’* being the primary compliance document.

The focus of this report is on the failure of the explosion protection characteristics of diesel engine systems (ExDES failures), as reported under clause 56(1)(m) of the NSW Coal Mine Health and Safety Regulation 2006 (CMHSR). This document summarises findings for reported incidents between January 2010 and October 2011.

2. **Explosion hazards**

2.1 Reporting requirements

An explosion can occur in an underground coal mine when there is an ignition source within and explosive atmosphere while it exists. In order to build an understanding of this risk, mining legislation in NSW requires various types of incidents to be reported.

Fuel source events must be reported where ‘an accumulation of gas that requires the withdrawal of people or results in the tripping off of electric power’ [CMHSR 2006 Clause 56(1)(g)]. This occurs when the concentration of methane in the atmosphere exceeds 1.25%.

Ignition sources and potential ignition sources must be reported, some of which include:

1. mechanical Ex failures [CMHSR Clause 56(1)(m)];
2. electrical Ex failures [also CMHSR Clause 56(1)(m)]; and
3. cable arcing [CMHSR Clause 56(1)(l)].

Figure 1 below shows a graph of the reported numbers of such methane events and incidents from underground coal mines in NSW.
2.2 Failure Rates

Figure 1 shows that the number of reported Ex DES failures (mechanical Ex failures) is significantly greater than the number of reported Ex electrical failures. The figure also shows an improvement in the number of ExDES reported failures in the last 12 months.

Last year there were 230 ExDES failures and 65 Ex electrical failures reported. This conservatively\(^1\) equates to an annual probability of failure of –

- 23\% for each ExDES item
- 0.12\% for each Ex electrical items

This means last year an individual DES was about 190 times more likely to have failure of its explosion protected characteristics than an individual explosion protected electrical item.

\(^1\) There are about 1030 registered DES’s in use at underground coal mines across NSW. The number of reported failures was 230. Each mechanical item had an annual probability of failure of about 23\%, i.e. 23 failures per year for every 100 items in service.

A conservative estimate for the number of Ex-protected electrical items in use at an average size underground coal mine in NSW is 2,000. Assuming approximately 30 mines means there would be at least 60,000 Ex electrical items. The number of reported failures was 65. Each Ex electrical item therefore had an annual probability of failure of about 0.12\%, i.e. 0.12 failures per year for every 100 items in service.
2.3 Co-Incidence of Gas Accumulation and Ignition Hazard

Based on the information in Figure 1, there was a 1% probability\(^2\) of an in-service failure of an ExDES at a underground coal mine at the same time an accumulation of methane occurred, i.e. a reportable event under, 56(1)(g).

NOTE: The ExDES is only assumed to be somewhere at the mine. It does not necessarily mean at the same location where the accumulation of methane occurred.

Figure 2 below shows it can be reasonably assumed\(^3\) that in NSW last year –

- There was greater than 90% probability that there were 6 or more occasions when a diesel engine was in-service with failed explosion-protection characteristics during a reported accumulation of methane gas in an underground coal mine.
- There was a 10% probability that this occurred 14 or more times.

![Minimum number of unprotected DES's in-service at an underground coal mine in NSW during the year July 2010 through June 2011 during a reportable accumulation of methane gas](image)

\(^2\) There were about 230 ExDES incidents in underground coal mines in NSW during July 2010 through June 2011 across (approx.) 30 UG coal mines. Hence each mine had an average of nearly 1200 hours between ExDES failures. This calculation assumes most failures are discovered during a daily test. Each incident therefore represents about 12 hours of use in an unprotected state. This is a conservative estimate considering a minority of failures are discovered during weekly or longer period testing. Therefore, each mine had a probability of 1% (or more) that at any moment during that year, a DES with failed explosion protection characteristics was in service somewhere at the mine.

\(^3\) Figure 2 uses foregoing assumptions and also assumes 900 reportable methane accumulations. Values were calculated using the binomial probability equation.
3. Time Trend of Reported ExDES Incidents

Figure 3 below shows the percentage of ExDES's that failed during each year. The failure rate shows a pleasing decline since 2009\(^4\).

![Figure 3: Reported failure rate per 100 registered DES's per year from 2007 through 2011](image)

It is believed that from 2007 to 2009, the proportion of actual incidents reported increased. Anecdotal evidence from industry members suggests the number of incidents may still be under-reported.

\(^4\) The value for 2011 is based on 10 months of data normalised for 1 year
4. Regional Reporting

Figure 4 below shows the average number of reported ExDES failures per underground coal mine in NSW by region for 2011. This supports anecdotal evidence that Southern mines are more diligent in reporting actual incidents.

![Figure 4 Regional Reporting](image)

Hunter Region

Figure 5 below shows the number of ExDES failures reported by Hunter region mines. Most Hunter region mines report below the industry average number of ExDES incidents. The highest reporting mines report 10 times more incidents than the lowest. Is the high variation due to unreported incidents at the lowest reporting mines?

![Figure 5 Hunter Region Mine Reporting](image)

Southern Region

Figure 6 below shows the number of ExDES failures reported by Southern region mines during 2011.
A majority of Southern region mines have an above average incident reporting rate. The highest reporting mines report over 10 times more incidents than the lowest. Is the high variation due to under-reporting of incidents at the lowest reporting mines?
5. **ExDES Failure Rate by manufacturer (OEM)**

Figure 7 below shows the likelihood of ExDES failures for the major OEM’s for the year July 2010 through June 2011.

The industry average is 22%, or 22 failures per 100 machines in service per year.

![ExDES Failures per machine by OEM](image)

Figure 7 Failure rate by OEM

6. **How did ExDES’s Fail?**

Figure 8 below shows a breakup of the reported failures for the year January 2010 through October 2011.

- 59% were a failure of the control system to keep the DES in an explosion-protected state.
- 38% occurred in a major DES component.

While not strictly reportable, 3% of reported incidents related to a failure of a strangler valve to shut down the engine.

5 The following sections looks at the details of how the control system and engine components failed.
For the period January ’10 to June ’11
Total No. of Reported Incidents = 323

Figure 8

The data contained no reported incidents of the failure of an electronic control system to keep the DES in an explosion protected state. This suggests that if electronic control systems were used in all diesel engine systems, the best part of 59% of failures could be reduced.

7. Control System Failures

7.1 Which Control System Components Failed?

Figure 9 below shows the distribution of failures among control system components:

Figure 9

6 ‘Other circuit control valves’ include flow control valve, pilot valve, override valve, needle valve, etc.
Water level sensors were the biggest single item among control system components that failed, causing 27.6% of failures. These were mainly Humphrey valve failures. Sometimes this sensor was installed wrong.

The next most frequent location of failure of the DES was at the shutdown cylinder, at 21.2%, mainly by jamming of the cylinder, and sometimes by wrong pressure setting, loose bolts/nuts/studs or bent linkage.

Cooling system valve/sensors contributed 17.1% of failures, mostly by non-operation of the valve/sensor. A couple of failures here were due to wrong installation.

Although contributing 30.9% of failures, “Other circuit control valves” encompassed a number of different functions and types of valves. These included the flow control valve, oil pressure, safety circuit pressure valve, relief valve etc (needle valve, pilot valve etc).

7.2 How did Control System Components Fail?

Figure 10 below shows the distribution of failure modes experienced by the same set of control system components:

![Control System Incidents by Failure Mode](image)

The data suggests that the most significant mode of failure in the pneumatic/hydraulic control system is valve/sensor reliability, accounting for 54.8% of control system failures. Can DES manufacturers control this?

Wrong settings came in next at 20.7% of reported failures. These included both accidental and deliberate deviations from the correct settings, although this was not usually identified in the incident report.

Circuit contamination caused 11.5% of control system failures. Can maintenance or overhaul procedures control this?
8. Engine Components Failures

8.1 Which Engine Components Failed?

Figure 11 below shows which engine components are more prone to failure.

![DES Component Failures by Location](image)

Second to the control system, the next source of failure of diesel engine systems was the exhaust flame trap, contributing 48.6% of non-control-system failures. Most of these were in the wet scrubber.

Lesser contributions were made by the exhaust manifold (15.9%).

8.2 Exhaust Flame Trap Failure Modes

Figure 12 below shows the distribution of failure modes of exhaust flame traps.

![Exhaust Flame Trap Failure Modes](image)
8.3 Exhaust Manifold and Turbo Fixed Connection Failure Modes

Figure 12 below shows the combined failures modes of the exhaust manifold and turbo:

![Exhaust Manifold and Turbo Fixed Connection Failure Modes](image)

8.4 Intake Flame Trap Failure Modes

Figure 14 below shows the distribution of failure modes of intake flame traps:

![Intake Flame Trap Failure Modes](image)
9. Top 10 Failures

Figure 15 below shows the top 10 ways a DES was reported to have failed. The percentages quoted are a proportion of the total number of failures and 84% of all failures are shown.

Valve/sensor reliability seems to be the greatest opportunity for improvement and could be improved by use of an electronic control system. The failures due to wrong settings in the pneumatic/hydraulic control circuit may have been due to either deliberate misuse, or insufficient security of the settings; there is currently insufficient information available to determine the split between the two.

Similarly for security of bolts, studs and nuts – OEM’s and users may share responsibility for improvement.

10. Strategies for Improvement

In order to reduce the probability of failure of ExDES and to more accurately assess the reliability of diesel engine system designs and maintenance regimes, the Department will -

- Improve the quality of data gathered and has introduced an ancillary report form for all ExDES reported (56)(1)(m) incident, copy attached. This form will allow the data to be directly attributed to each particular diesel engine system design. Common issues can be identified and reduced.
- Provide to each OEM a copy of the data that relates to their DES and require each OEM to review the incidents and provide design solutions, as applicable.
- Require OEMs to critically review and analyse the safety integrity of their shutdown systems and other components.
- Encourage OEMs to review lifecycle inspection, testing and maintenance requirements and encourage users to comply with these OEM lifecycle recommendations in their maintenance management system.
- Publish an update of statistics on an annual basis.
- Continue with the recognised service facility program for the overhaul of ExDES’s.
- Encourage all ExDES owners to comply with the requirements of AS/NZS 3584.3:2012 *Diesel engine systems for underground coal mines - Maintenance*.
- Encourage the use of the relevant national competencies for the assessment of people maintaining and overhauling ExDES.
- Phase out all older ‘approved’ ExDES, currently operating under exemption by the end of 2013.
- Implement a program to improve the quality of the design, manufacture and supply of new ExDES consistent with the electrical Ex certification schemes (certificate of conformity) by 2016.
Ancillary Report – In Service Failure of Explosion Protected Diesel Engine Systems, Clause 56(1)(m)

Pursuant to Clause 56 of the Coal Mine Health and Safety Regulation 2009, this form is gazetted and additional to the Coal Notification of Incident Form. The Report must be completed and submitted to NSW Trade & Investment within 21 days for all notified incidents subject to Clause 56(1)(m) in relation to explosion protected diesel engine systems.

1 About the coal operation where the incident occurred:
 Name of coal operation:
 Date of incident:
 Mine Identification No. (if known):

2 Machine identification
 MDR¹ or MDA²:
 Machine Manufacturer:
 Machine Model:
 Machine Owner:

3 Last inspections
 Date of last Code D:
 Registered Service Facility (RSF) No.:

4 Type of Ex Failure:
 There was potential for, or there was evidence of: (only tick the most likely one)
 Spark external to engine Flame external to engine Surface temperature to exceed 150 deg C

5 Location of failure – Diesel engine system component OR Control System:
 Which part of the diesel engine system failed? (tick one – root cause only)
 Exhaust manifold Intake manifold Engine block & cylinders
 Intake pipe(s) Engine head If one of these components is selected, go to 6 below.
 Forced induction (turbo / supercharger) Pneumatic/hydraulic control system
 Electrical control system If one of these control systems is selected, go to 7.

6 Failure Mode of Engine Component
 Which major component failed?
 Tick one from this column
 How did the major component fail?
 Tick one only (initial cause) from the same row

 Wet flame trap (conditioner):
 Exhaust carbon build up floats Water below LWCO when engine stops
 Float failure issues Blocked breather
 Structural failures Excessive backpressure
 Other

 Fixed connection (issues):
 Bolts, nuts & studs Surface flatness
 Gaskets Damage
 Thread issues Other
 Other

 Open joints (issues):
 Surface flatness / finish Bolts, nuts & studs
 Excessive gap Damage
 Thread issues Other
 Other

 Positive flame trap element:
 Damage Other
 Excessive internal clearances Other
 Other

 Structural failures:
 Fatigue / Cracking Cavitating failure
 Corrosion Turbo seal failure
 Physical contact damage Other
 Other

 Excessive surface temperature:
 Cooling system failure Other
 Other

6. Other (please specify the component and how it failed)

Go to Question 8.

¹ MDR – Mine Design Registration number. MDA – Mine Department Approval number. MIR – Mine item Registration number.
² LWCO – Low Water Cut-Off.
7 Control system failure

Only answer this question if directed to do so from Question 5.

<table>
<thead>
<tr>
<th>Component failed (tick one from this column)</th>
<th>How did the control system fail? (tick one from this column)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water level sensors</td>
<td>Valve/boiler faults</td>
</tr>
<tr>
<td>Shutdown cylinders or solenoid</td>
<td>Wrong settings</td>
</tr>
<tr>
<td>Cooling system sensors</td>
<td>Circuit contamination or blockage</td>
</tr>
<tr>
<td>Exhaust temperature sensors</td>
<td>Installed wrong</td>
</tr>
<tr>
<td>Engine oil pressure sensors</td>
<td>Loose valve/sensor mounting</td>
</tr>
<tr>
<td>Other circuit control valve failure</td>
<td>Loose failure</td>
</tr>
<tr>
<td>All or multiple sensor failure</td>
<td></td>
</tr>
<tr>
<td>Other (please specify)</td>
<td>Other (please specify)</td>
</tr>
</tbody>
</table>

8 Recommendations for prevention

Causal factors:

If more space is required, please attach additional page(s).

Would a design change prevent or minimise failure?
☐ Yes ☐ No If yes, describe how below

Would a Code D overhaul change prevent or minimise failure?
☐ Yes ☐ No If yes, describe how below

Would a maintenance/inspection change prevent or minimise failure?
☐ Yes ☐ No If yes, describe how below

If more space is required, please attach additional page(s).

9 Other Comments

If more space is required, please attach additional page(s).

10 Signature

Have you informed the manufacturer of this failure?
☐ Yes ☐ No

Signature of Manager of Mechanical Engineering:

Name:

Date signed:
NOTES
1. Clause 5(1)(c) of the Coal Mines Health and Safety Regulation 2009 requires notification of any incident or matter involving the 'in-service failure of the explosion protection characteristics of explosion protection plant'. This Ancillary Report is to provide a consistent approach for all underground coal mines.
2. The AS 3584.2 standard stipulates the explosion protection characteristics and defines the components (characteristics) which form part of an explosion protected diesel engine system.
3. All 'diesel engine systems used in underground mines at a coal workplace' must be both design and item registered under Part 5.2 of the OHS Regulation 2001 before use.
4. For the purpose of clarifying the above provisions, the Department requires the following to be reported:
 Any incident or matter where it is evident an explosion protected diesel engine system has been (or is likely to have previously been) operating in a non-explosion protected condition
A non-explosion protected condition means a condition which has potential to ignite either coal dust on the surface of the engine, or methane in the surrounding atmosphere.
5. Examples of matters which must be notified include, (but are not limited to):
 a) any explosion protection characteristic failures when discovered during use, routine maintenance or overhaul;
 b) the failure of a diesel engine system to shut down when required by the control sensors, for example - loss of water in the scrubber; excessive system temperature (above 150°C); failure of engine cooling system, etc;
 c) a catastrophic failure of the diesel engine system which protrudes external to the engine, such as turbochargers, superchargers, piston, valves, connecting rods, etc;
 d) the failure of a primary and backup control sensor, for example temperature, floats, etc;
 e) the failure of an explosion protected open joint which exceeds the specified dimensions for explosion protection;
 f) looseness of any explosion protected fixed joint (gasket joint);
 g) deterioration or significant damage to any dry type flame trap;
 h) the failure or loosening of any screw type explosion protection joint;
 i) the failure to replace any explosion protected component, such as a cap, plug, flame trap or other like component, after carrying out maintenance activities;
 j) any evidence of a fire or spark external to the explosion protected joints, flammator or water conditioner;
 k) any catastrophic failure of a turbo in a dry type exhaust system;
 l) failure of the cooling system, and/or sensors such that the external surface temperature of the diesel engine and/or exhaust gas temperature at the flammator appears to have exceeded 150°C;
 m) evidence of thermal degradation of an exhaust filter; and
 n) the water level not being at or above the minimum safe water level when the diesel engine shuts down automatically.
6. Examples of matters which are not required to be notified include, (but not limited to):
 a) the failure of a single sensor where backup sensors are installed, functional and the diesel engine system is not in a un-explosion protected condition; for example:
 (i) a single exhaust float failure where a backup float is fitted and functional;
 (ii) a single temperature sensor failure where a backup sensor is fitted and functional;
 b) the failure of an engine to start;
 c) stopping of the engine system because a sensor has operated;
 d) failing of the engine cooling system where the engine shuts down;
 e) any other failure which does not render the diesel engine system in an un-explosion protected condition.

Please contact your local NSW Trade and Investment office if you require assistance completing the form.

NSW Trade and Investment Offices located in coal mining regions

Hunter Region
Maitland
PO Box 344
Hunter Region Mail Centre NSW 2310
Phone: (02) 4931 8666
Fax: (02) 4931 6790
maitland.coalnotification@dpi.nsw.gov.au

Singleton
PO Box 51
Singleton NSW 2330
Phone: (02) 6572 1201
Fax: (02) 6572 1201
singleton.coalnotification@dpi.nsw.gov.au

South East Region
Lithgow
PO Box 69
Lithgow NSW 2790
Phone: (02) 6392 7888
Fax: (02) 6392 8788
lithgow.coalnotification@dpi.nsw.gov.au

Wollongong
PO Box 674
Wollongong NSW 2520
Phone: (02) 4223 8220
Fax: (02) 4223 3851
wollongong.coalnotification@dpi.nsw.gov.au