

Mechanical Engineering Update

In-service failures of explosion protected diesel engine systems during 2012

Background

NSW Mine Safety engaged a safety engineering consultant to review in-service failures of explosion protected diesel engine systems (ExDES) reported under clause 56(1)(m) of the *Coal Mine Health and Safety Regulation 2006* during 2012.

This report follows Safety Bulletin <u>SB12-01</u> *In-service failures of explosion protected diesel engine systems during 2010 and 2011* and utilised the data collected through the gazetted ExDES ancillary forms. A copy of the consultant's report Explosion protected diesel engine systems (ExDES) Failures Analysis Report (by Shakti Corp Pty Ltd) is attached to the electronic version of this update.

Outcomes

There continues to be an improvement in the failure rate per 100 registered ExDEs over the past 12 months. The reported failure rate has reduced to less than 20% (per 100 registered ExDESs) over the past three years. While this reduction is encouraging, further improvements are still required.

Key aspects of the report include:

- Pneumatic/hydraulic control system failure accounted for 43% of all failures. Shutdown cylinder failure accounted for 50% of failures, circuit contamination was a significant factor. There were no reported electrical control system failures. Some Original Equipment Manufacturers (OEMs) reported no failures of their pneumatic/hydraulic control systems.
- Exhaust flame trap issues accounted for 32% of all failures. Of that, carbon build-up was a significant factor.
- Issue with bolts, nuts, studs, gaskets on fixed joints and excessive gaps on open joints were also key factors.
- Failures were equally proportioned between mine-owned machines and contractor/hirer-owned machines
- Both maintenance and design improvement recommendations were equally reported in the ancillary forms.
- Some engine types performed better than others. Each original equipment manufacturer will be provided with their own data.
- Almost all failures were due to systematic issues as opposed to random hardware failures.

Recommendations

- 1. The recommendations in <u>SB12-01</u> *In-service failures of explosion protected diesel engine systems during 2010 and 2011* still apply and should be considered by all designers and people with management or control of ExDES.
- 2. A stronger emphasis on the functional safety aspect of control system is required by designers and maintenance personel.

- 3. For new ExDESs, designers should consider self monitoring control systems with inbuilt diagnostics.
- 4. Joints, fasteners, supporting brackets and fittings should be engineered to good engineering practice. Flexible joints may need to be considered in some applications.
- 5. Maintenance people should proof test all safety functions periodically and ensure adequate regular cleaning of wet exhaust conditioners (daily).
- 6. Designs should include complete code D information including assembly and alignment of all joints.
- 7. With the high failure rate of shutdown cylinders, the integrity and reliability of emergency shutdown systems to perform the shutdown function is paramount.
- 8. Automatic methane detectors should be installed and used on ExDES so engines shut down in a timely manner.

Strategies

There remains a need to continue to improve the reliability of the explosion protection characteristics of ExDESs. Any Ex failure of an ExDES is unacceptable. All safety functions and joints associated with ExDES need to have a very low probability of failure on demand.

To provide more information on this analysis and to outline proposed design changes to new ExDES a consultative meeting with interested stakeholders will be held in the Maitland region on the 26 November 2013. If you are interested in being part of the consultative meeting please forward your expression of interest to Lyndon Hughes at <u>lyndon.hughes@industry.nsw.gov.au</u> before 5 November 2013.

Signed

Peter Sunol Senior Inspector of Mechanical Engineering Mine Safety Operations

NOTE: Please ensure all relevant mechanical people in your organisation receive a copy of this update and are informed of its content. This update should be processed in a systematic manner through the mine's (or other PCBU's) information and communication process.

DISCLAIMER

The information contained in this publication is based on knowledge and understanding at the time of writing. However, because of advances in knowledge, users are reminded of the need to ensure that information on which they rely is up to date and to check the currency of the information with the appropriate officer of the NSW Department of Trade and Investment, Regional Infrastructure and Services or the user's independent advisor.

Explosion protected diesel engine systems (ExDES) Failures Analysis Report

Produced on behalf of NSW Mine Safety

by Shakti Corp

October 2013

ACKNOWLEDGEMENTS

This survey was conducted by Shakti Corp on behalf of NSW Trade & Investment Mine Safety:

Keerthy Mysore Principal Shakti Corp Pty Ltd 55B, Thomas Wilkinson Avenue Dural, NSW 2158. Australia.

 Ph:
 +61 2 9651 3206

 Fax:
 +61 2 9651 3406

 Email:
 support@shakticorp.com.au

DISCLAIMER

The compilation of information contained in this document relies upon material and data derived from a number of third party sources and is intended as a guide only in devising risk and safety management systems for the working of mines and is not designed to replace or be used instead of an appropriately designed safety management plan for each individual mine. Users should rely on their own advice, skills and experience in applying risk and safety management systems in individual workplaces.

Use of this document does not relieve the user (or a person on whose behalf it is used) of any obligation or duty that might arise under any legislation (including the *Occupational Health and Safety Act 2000,* any other act containing requirements relating to mine safety and any regulations and rules under those acts) covering the activities to which this document has been or is to be applied.

The information in this document is provided voluntarily and for information purposes only. The NSW Government does not guarantee that the information is complete, current or correct and accepts no responsibility for unsuitable or inaccurate material that may be encountered.

Unless otherwise stated, the authorised version of all reports, guides, data and other information should be sourced from official printed versions of the agency directly. Neither NSW Trade & Investment, the NSW Government, nor any employee or agent of the department, nor any author of or contributor to this document produced by the department, shall be responsible or liable for any loss, damage, personal injury or death howsoever caused. A reference in this document to "the Department" or "NSW Trade & Investment" or is taken to be a reference to the NSW Department of Trade and Investment, Regional Infrastructure and Services.

Users should always verify historical material by making and relying upon their own separate enquiries prior to making any important decisions or taking any action on the basis of this information.

This publication contains information regarding occupational health, safety, injury management or workers compensation. It includes some of your obligations under the various workers compensation and occupational health and safety legislation that NSW Trade & Investment administers. To ensure you comply with your legal obligations you must refer to the appropriate legislation.

In the event of inconsistency with a provision of any relevant Act or Regulation the provision prevails over the guideline.

This publication may refer to NSW legislation that has been amended or repealed. When reading this publication you should always refer to the latest laws. Information on the latest laws can be checked at:

www.legislation.nsw.gov.au

Alternatively, phone (02) 4931 6666.

Table of Contents

1.0	Introdu	uction	6
2.0	Overvi	ew	7
3.0	The stu	Jdy	12
4.0	Failure	locations and modes	13
4.:	1 Failu	ire mocations	13
4.2	2 Failu	ires of engine components - breakdown	14
4.3	3 Failu	re modes of engine components - breakdown	21
4.4	4 Failu	res of pneumatic/hydraulic control system – breakdown	25
4.5	5 Failu	re modes of pneumatic/hydraulic control system – breakdown	31
5.0	Miners	s' recommendations for prevention	32
5.2	1 Majo	or contributors	33
5.2	2 Wet	flame trap	34
5.3	3 Shut	down cylinders or solenoid	35
5.4	4 Fixe	d connections	36
5.5	5 Othe	er circuit control valves	37
5.6	5 Ope	n joints	38
5.7	7 Cool	ling system sensors	39
5.8	8 Wat	er level sensors	40
5.9	9 Con	clusions	41
6.0	OEM S	tatistics	42
6.3	1 Repo	orted failures per OEM	42
6.2	2 Inte	ntionally blank	44
6.3	3 Engi	ne component failures by DES OEM	45
	6.3.1	Exhaust flame trap (wet/dry) failures	46
	6.3.2	Exhaust pipe(s) failures	47
	6.3.3	Intake flame trap & housing failures	48
	6.3.4	Intake manifold failures	49
6.4	4 Pneu	umatic/hydraulic control system by DES OEM	50
	6.4.1	Shutdown cylinders or solenoid failures	51
	6.4.2	Water level sensor failures	52
	6.4.3	Other circuit control valve failures	53
	6.4.4	Cooling system sensor failures	54

7.0	Conclusions	55
7.1	Top 10 failure modes	55
7.2	Proposed design vs. maintenance recommendations	56
7.3	Functional safety management	56
8.0	Acronyms & definitions	57
9.0	Status of document	58
9.1	Liability	58
10.0	Bibliography	EO
10.0	Dibilography	20

- Annexure A: Ancillary Report In Service Failure of Explosion Protected Diesel Engine Systems, Clause 56(1)(m)
- Annexure B: Consolidation of Failure Modes Bases

1.0 INTRODUCTION

This report presents the findings from an analysis of the in-service failures of explosion protection characteristics of explosion-protected plant in NSW underground coal mines between January and December 2012.

The study was conducted for NSW Trade & Investment Mine Safety.

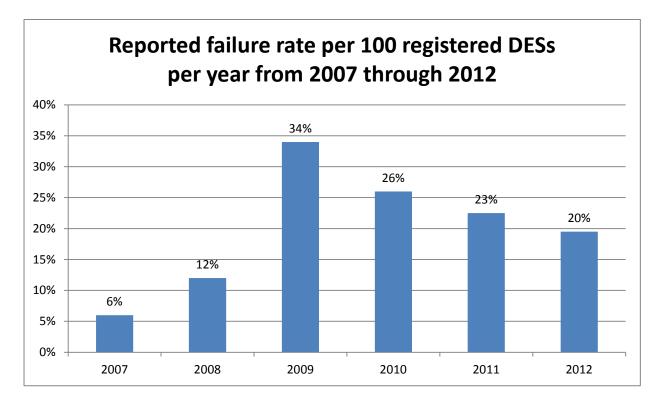
Coal Mine Health and Safety Act 2002 aims to secure the health, safety and welfare of people in connection with coal operations. *Coal Mine Health and Safety Regulation 2006* (CMH&SR) prescribes certain matters for the purposes of this Act.

Clause 56(1)(m) of the CMH&SR 2006 is reproduced below:

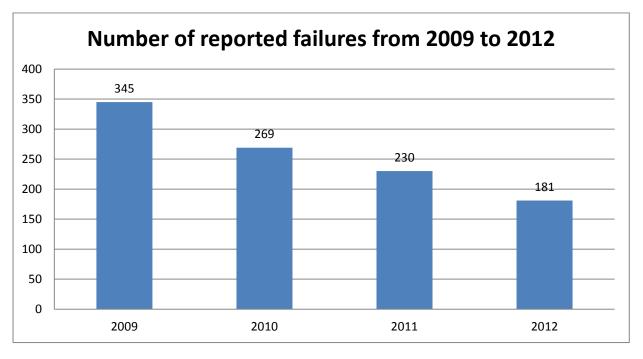
56 Notification of certain incidents at or in relation to coal operations:

section 110 (1) (c) of the Act

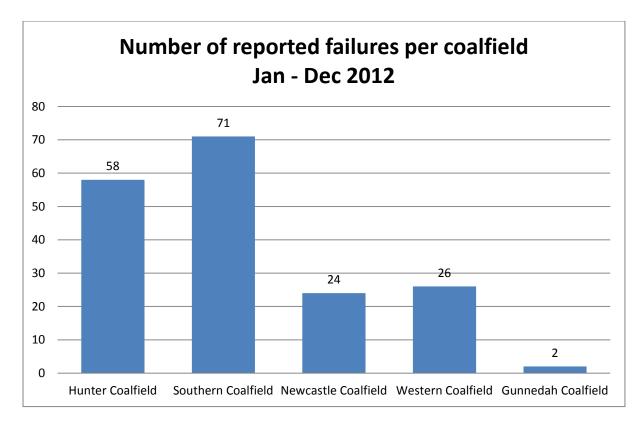
The following are declared to be incidents or matters that are required to be notified for the purposes of section 110 (1) (c) of the Act:

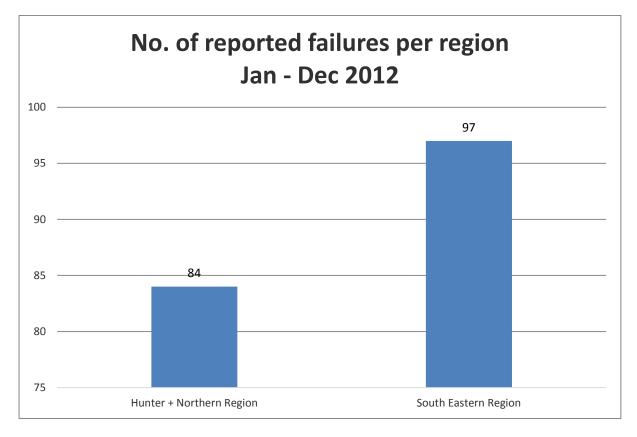

(m) the in-service failure of the explosion-protection characteristics of explosion-protected plant

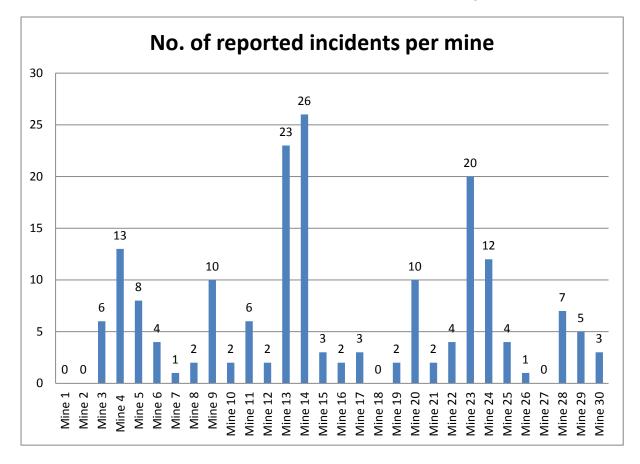
This report is a sequel Safety Bulletin SB12-01, which presented an analysis of 56(1)(m) Failures from January 2010 to July 2011 and also introduced an ancillary report form for all ExDES reported 56(1)(m) failures. The main purpose of the ancillary report was to improve the quality of data gathered, a copy of which is attached in Annexure A of this report. In comparison with data collected prior to 2012, there has been a significant improvement in the quality, organisation and the extent of data received with the new ancillary reports.

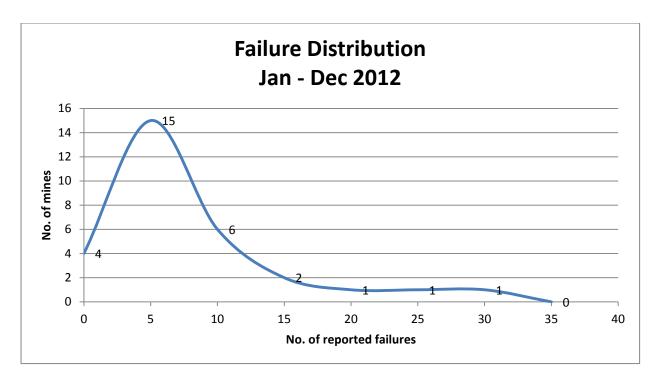

This report analyses the first 181 failures being the first 12 months of data collected through the ancillary report between January and December 2012.

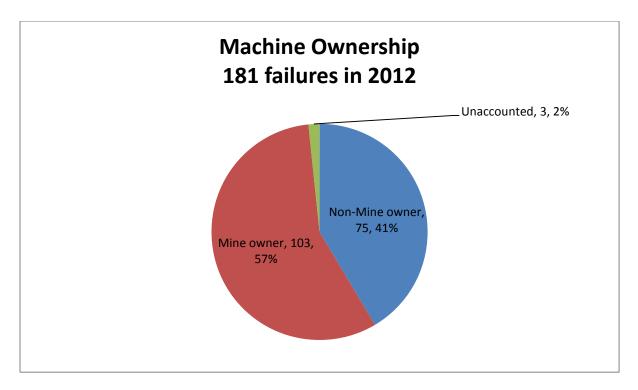
2.0 OVERVIEW


Figure 1 shows the reported failure rate per 100 DES systems per year from 2007 to 2012. Figure 2 shows the number of reported failures from 2009 to 2012.









The number of reported failures for individual mines can be seen in Figure 5 below.

The Failure Distribution curve in Figure 6 is to be interpreted as follows:

•	Number of Mines with 0 failures:	4
•	Number of Mines with 1 to 5 failures	15
•	Number of Mines with 6 to 10 failures	6
•	Number of Mines with 11 to 15 failures	2
•	Number of Mines with 16 to 20 failures	1
•	Number of Mines with 21 to 25 failures	1
•	Number of Mines with 26 to 30 failures	1

The pie chart in Figure 7 shows the contributions to the total failures from mine-owned and non-mine owned machines. The latter category predominantly comprises of machine hirers. The distribution initially suggests that mine owned machines have contributed more i.e., 57% as opposed to non-mine owned machine contribution of 41%. But, this also highlights the fact that there may be incidents that go unnoticed if they are detected once the machine is off the mine site.

3.0 THE STUDY

The findings of the study are presented in three parts:

Part I: Failure locations and modes

Analysis of the location and the components of the Diesel Engine Shutdown (DES) System that failed and their modes of failure.

Part II: Miners' recommendations for prevention

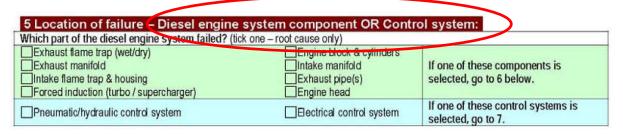
the ancillary report (Annexure A) prompts for design and/or maintenance/testing changes that would prevent / minimise failure. This part of the study compiles the changes proposed by the end users (miners) and presents them for each subsystem.

Part III: OEM statistics

This part of the study presents an analysis of non-specific OEM failures against their inventory levels.

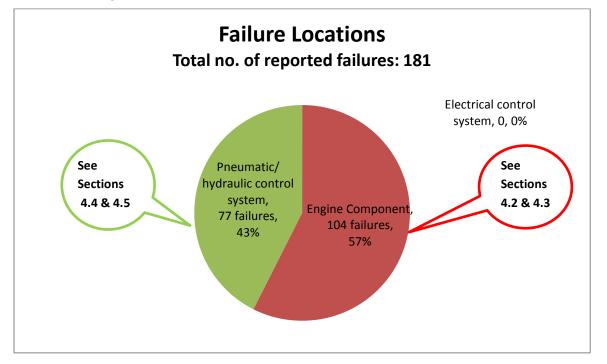
OEM-specific failure analysis will be provided to each OEM separate from this report as addenda.

The following sections present in detail the three parts of the study.


4.0 FAILURE LOCATIONS AND MODES

This section analyses the location and the components of the DES system that failed and their modes of failure.

4.1 FAILURE LOCATIONS


The ancillary report (refer Annexure A) broadly classifies "Location of failure" into two categories:

- Diesel engine system component
- Control system

Figure 8 Excerpt from ancillary report

Out of the total of 181 failures reported in 2012, Figure 8 shows the failure proportioning into these two categories.

A breakdown of the components that failed within the two major categories is shown in the next pages.

The ancillary reports attributed the total of 181 failures to major engine or control system components as per Table 1 below:

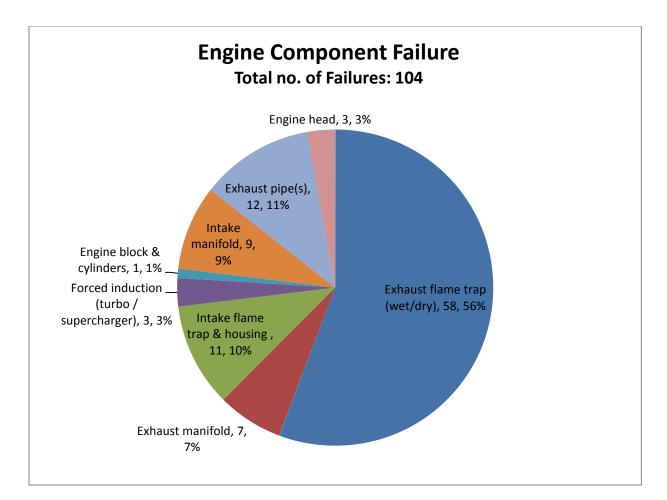

Failure Location		Failures	% Contribution to 2012 failures
Pneumatic/hydraulic control system		77	43%
Exhaust flame trap (wet/dry)		58	32%
Exhaust pipe(s)		12	7%
Intake flame trap & housing		11	6%
Intake manifold	Engine	9	5%
Exhaust manifold	Components	7	4%
Forced induction (turbo / supercharger)		3	2%
Engine head		3	2%
Engine block & cylinders		1	1%
Electrical control system		0	0%
Total Reported Failures - 2012		181	100%

Table 1Contributors to component failure

4.2 FAILURES OF ENGINE COMPONENTS - BREAKDOWN

In Table 1, engine components constitute 104 out of the 181 failures and are shown on a pie chart in Figure 9.

This section analyses the failure modes of the major contributors to engine component failures, as shown in Figure 9 and reproduced in Table 2.

Major contributors to Engine Component Failure	Failures	% Contribution to 2012 failures
Exhaust flame trap (wet/dry)	58	32%
Exhaust pipe(s)	12	7%
Intake flame trap & housing	11	6%
Intake manifold	8	5%
Exhaust manifold	7	4%

Table 2

Major contributors to engine component failure

Consolidation

The following pages present pie charts on failure location and mode proportions for each of the major contributors in Table 2:

- As per ancillary reports
- Consolidated (refer Annexure B) after:
 - o Cognisance of causal factors
 - o Grouping of locations/modes

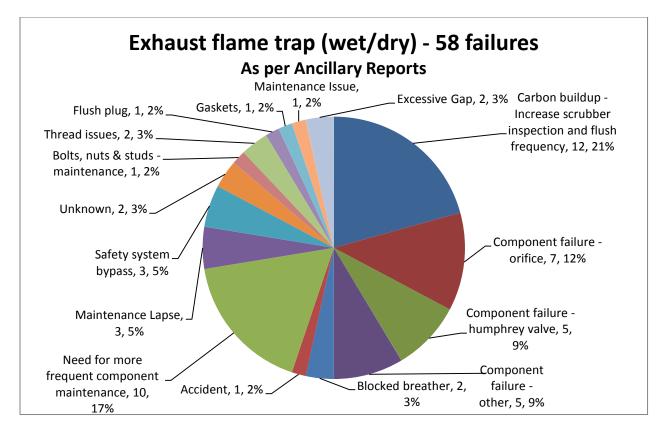
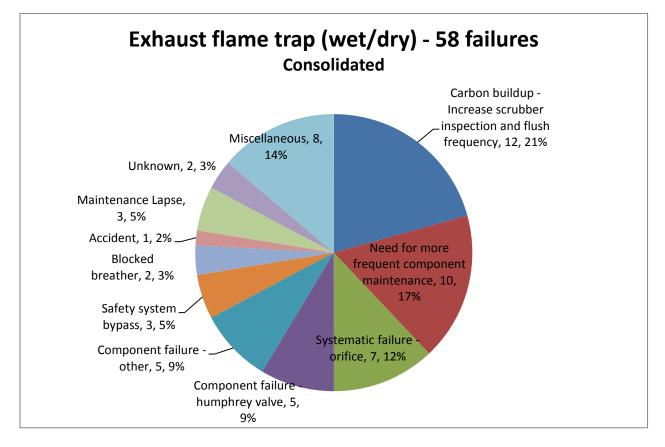
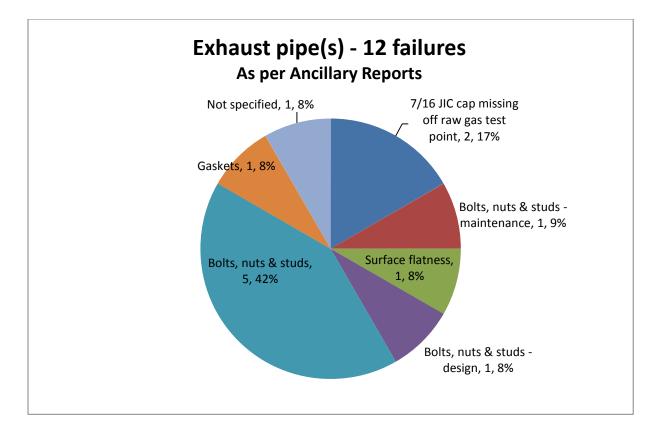
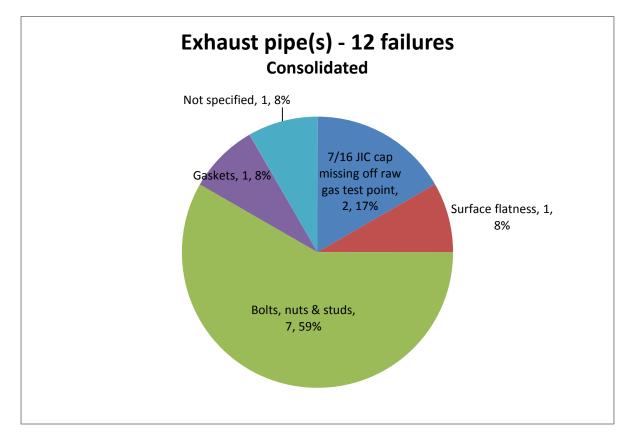





Figure 11

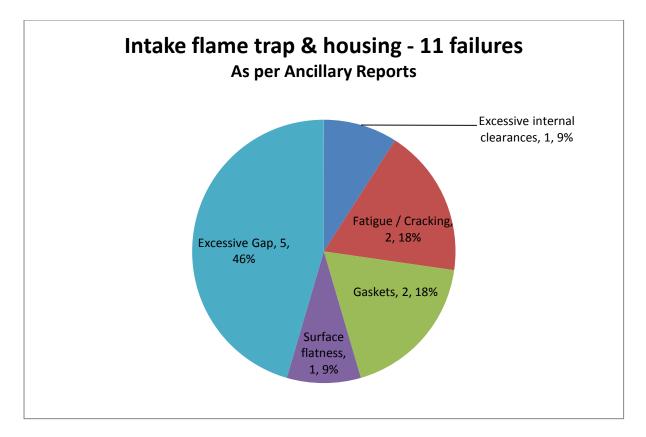
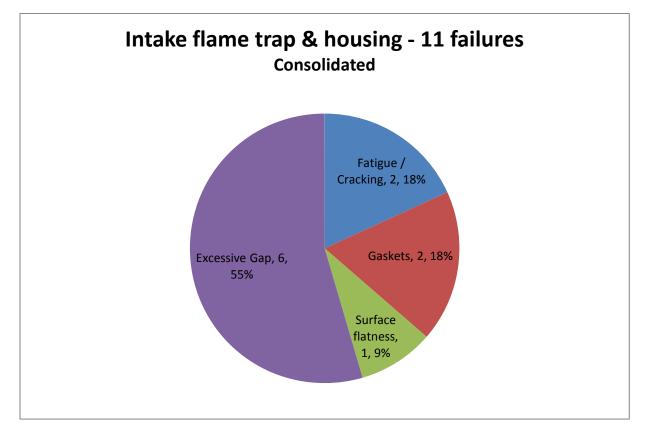
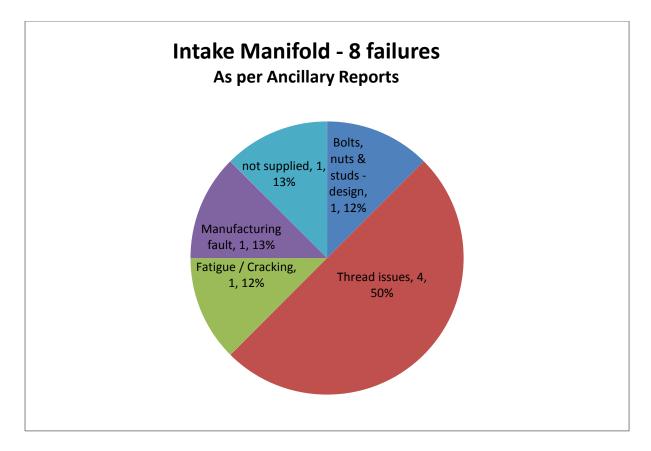




Figure 15

Consolidation deemed unnecessary

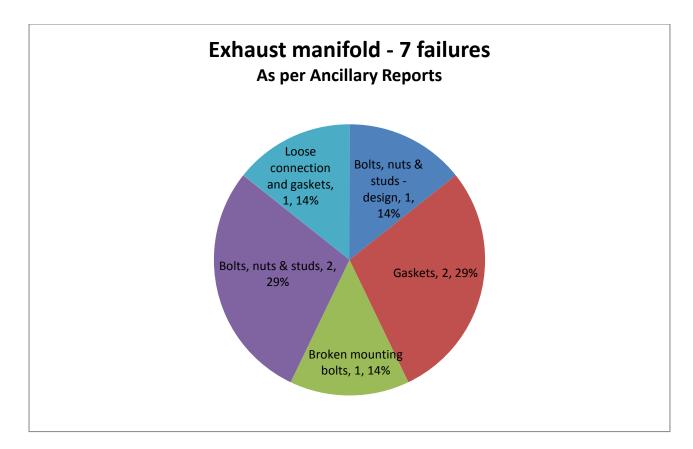
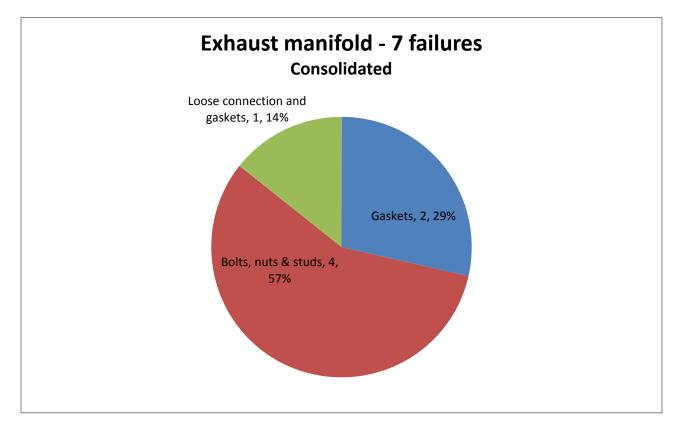
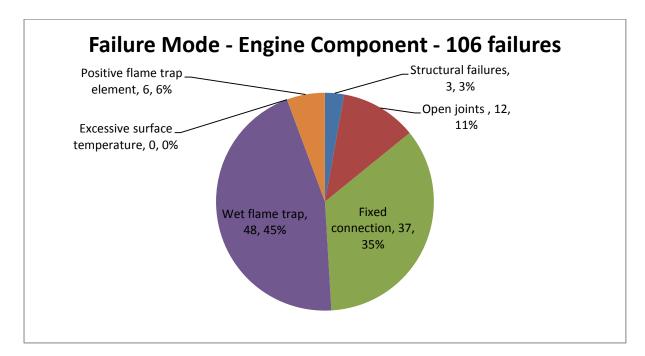
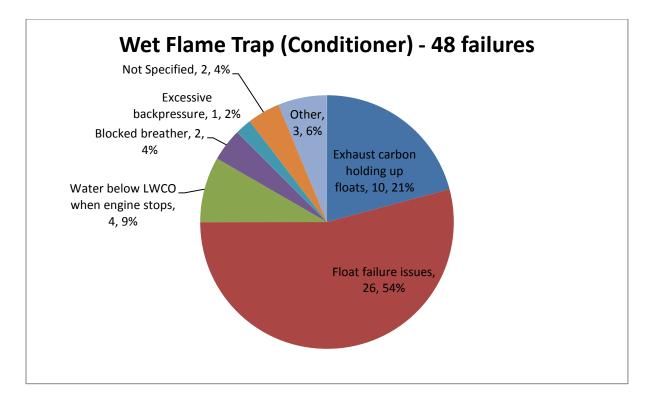



Figure 18




4.3 FAILURE MODES OF ENGINE COMPONENTS - BREAKDOWN

For the failure of an engine component, the ancillary report prompts for a selection of failure modes as shown below. The failure mode distributions for each of the components listed in Figure 19 below are shown in the next pages.

6 Failure Mode of Engine Component						
Which major component failed?	How did the major component fail?					
Tick one from this column:	Tick one only (initial cause) from the sam	ne row:				
Wet flame trap (conditioner):	Exhaust carbon holding up floats Float failure issues Structural failures	Water below LWCO ² when engine stops Blocked breather Excessive backpressure Other				
Fixed connection (issues):	Bdts, nuts & studs Gaskets Thread issues	Surface flatness Damage Other				
Open joints (issues):	Surface flatness / finish Excessive gap Thread issues	Bolts, nuts & studs Damage Other				
Positive flame trap element:	Damage Excessive internal clearances	Other				
Structural failures:	Fatigue / Cracking Corrosion Physical contact damage	Catastrophic failure Turbo seal failure Other				
Excessive surface temperature:	Cooling system failure	Other				
Other (please specify the compone	ent and how it failed)					

Figure 20 Excerpt from ancillary report

Of the 10 failures due to exhaust carbon holding up floats reported in Figure 21 above:

- 9 out of 10 reports recommended more frequent cleaning of scrubber with detergent / special scrubber cleaner
- 3 out of 10 reports recommended change in technology where particulate filter was not required/float system more tolerant to carbon
- 1 out of 10 reports pointed out that the new baffle in scrubber captured more contaminants exacerbating the issue.

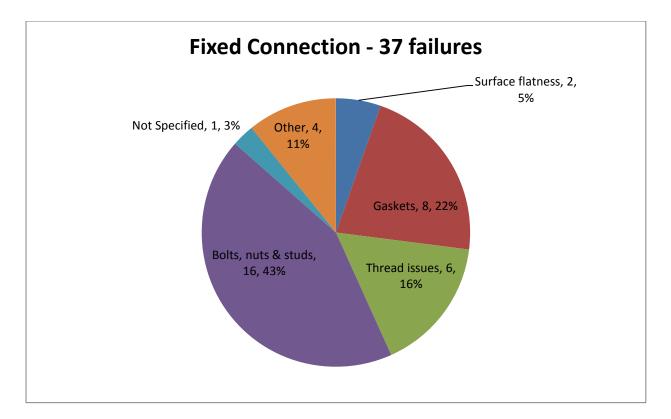
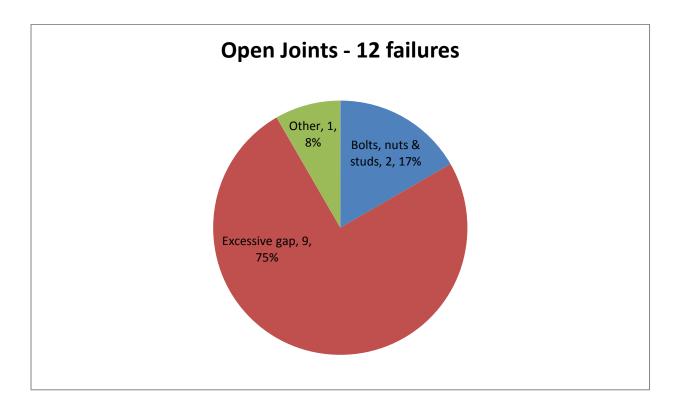



Figure 23

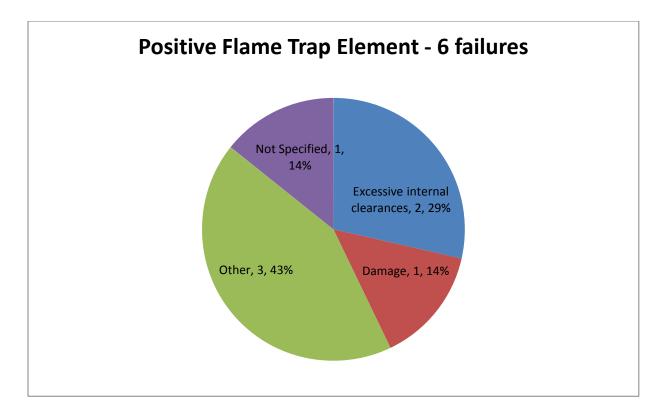
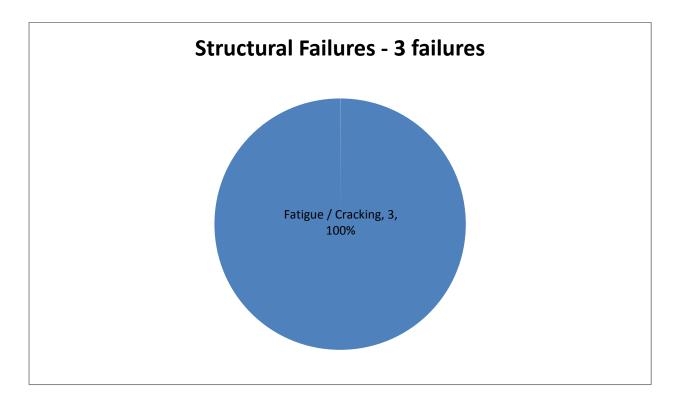
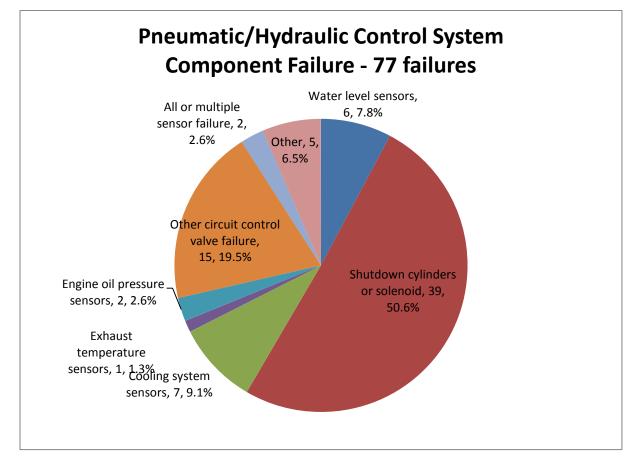



Figure 25



4.4 FAILURES OF PNEUMATIC/HYDRAULIC CONTROL SYSTEM – BREAKDOWN

A breakdown of the 77 pneumatic / hydraulic control system components out of a total of 181 failures from Table 1 is shown in Table 3 and Figure 26 below:

Pneumatic / Hydraulic Control System Component	Failures	% Contribution to 2012 failures
Shutdown cylinders or solenoid	39	22%
Other circuit control valve failure	15	8%
Cooling system sensors	7	4%
Water level sensors	6	3%
Other	5	3%
Engine oil pressure sensors	2	1%
All or multiple sensor failure	2	1%
Exhaust temperature sensors	1	1%
Total	77	43%

Table 3

This section analyses the failures of the major contributors to the hydraulic/pneumatic control system component failures shown in Figure 26 and listed in Table 4 below:

Pneumatic / Hydraulic Control System Component	Failures	% Contribution to 2012 failures
Shutdown cylinders or solenoid	39	22%
Other circuit control valve failure	15	8%
Cooling system sensors	7	4%
Water level sensors	6	3%

Table 4

Major contributors to pneumatic / hydraulic control system component failure

For the failure of a pneumatic/hydraulic control system component, the ancillary report prompts for a selection of failure modes as shown below:

Ihich component failed? (tick one from this column) Water level sensors Shutdown cylinders or solenoid Cooling system sensors Exhaust temperature sensors Engine oil pressure sensors Other circuit control valve failure All or multiple sensor failure	How did the control system fail? (tick one from this column) Valve/sensor faults Wrong settings Circuit contamination or blockage Installed wrong Loose valve/sensor mounting Hose failure
Other (please specify)	Other (please specify)

Figure 28 Excerpt from ancillary report

Consolidation

The following pages present pie charts on failure location and mode proportions for each of the major contributors in Table 4:

- As per ancillary reports
- Consolidated (refer Annexure B) after:
 - o Cognisance of causal factors
 - Grouping of locations/modes
 - Categorisation of "OTHER" entries

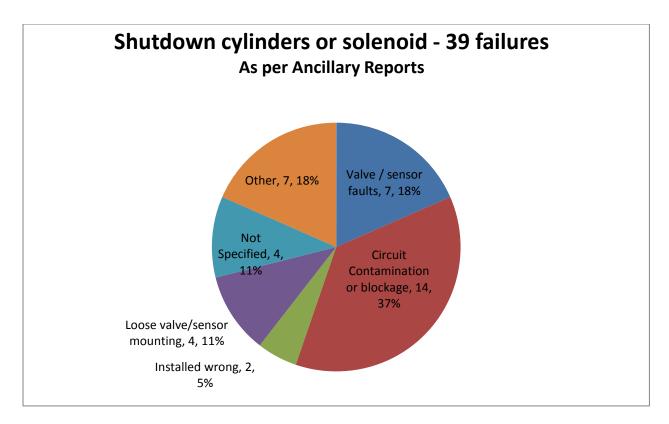
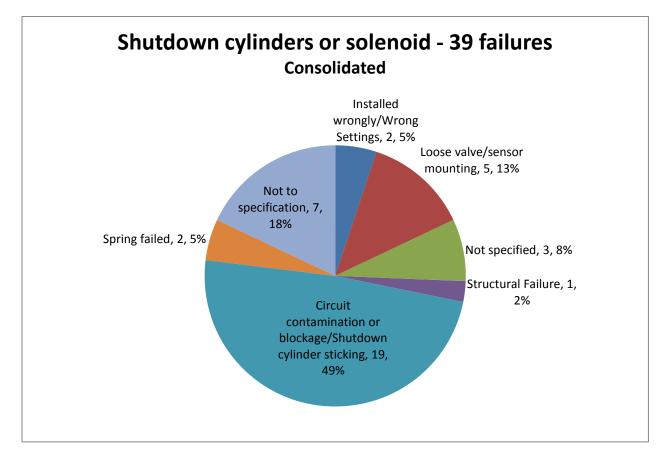



Figure 29

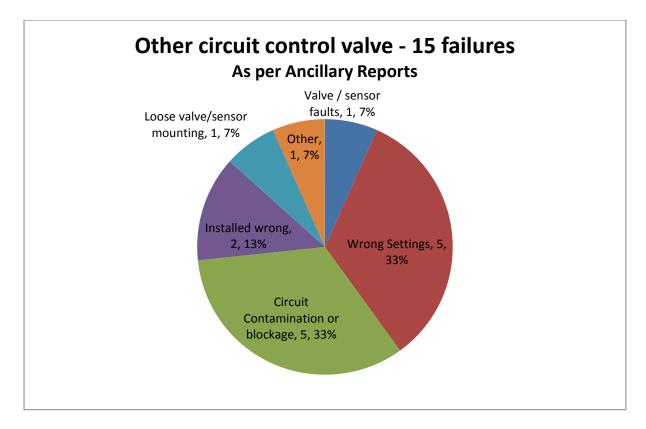
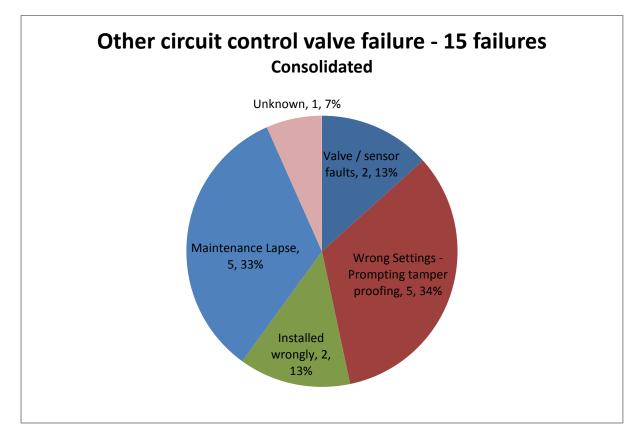
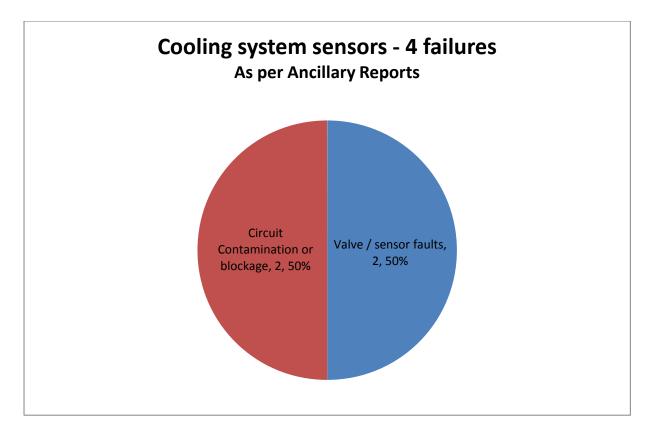
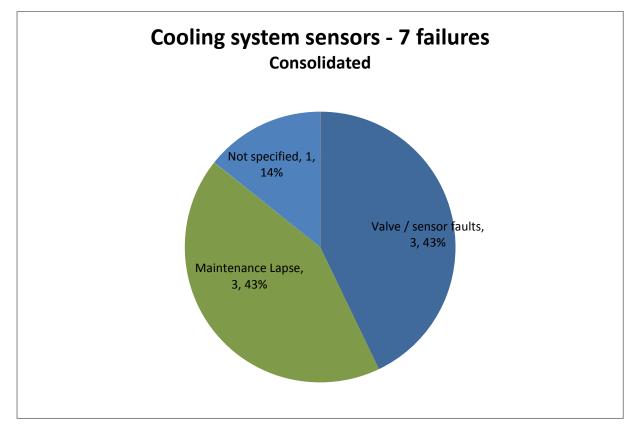





Figure 31

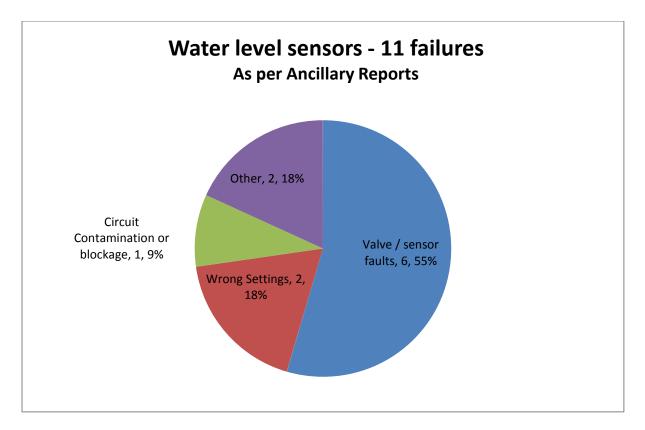
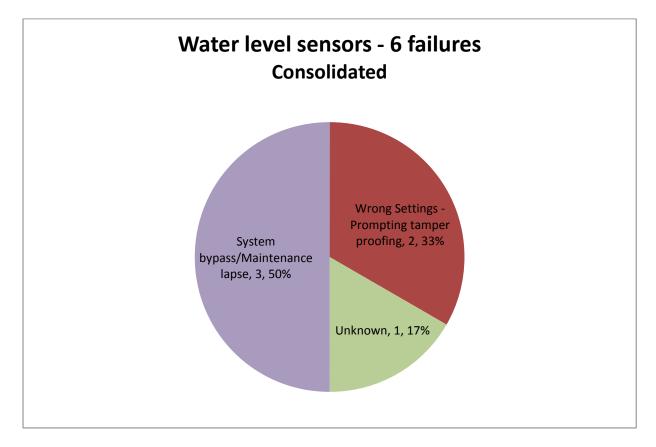



Figure 35

4.5 FAILURE MODES OF PNEUMATIC/HYDRAULIC CONTROL SYSTEM – BREAKDOWN

The overall failure modes of pneumatic/hydraulic control system components highlighted in Figure 36 is shown as a pie chart in Figure 37 below.

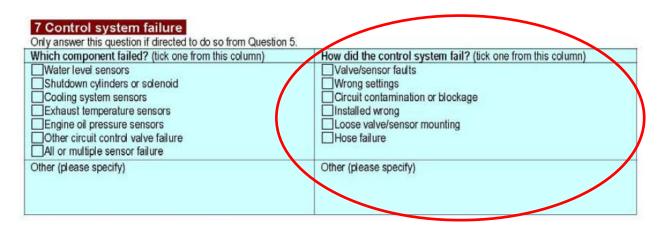
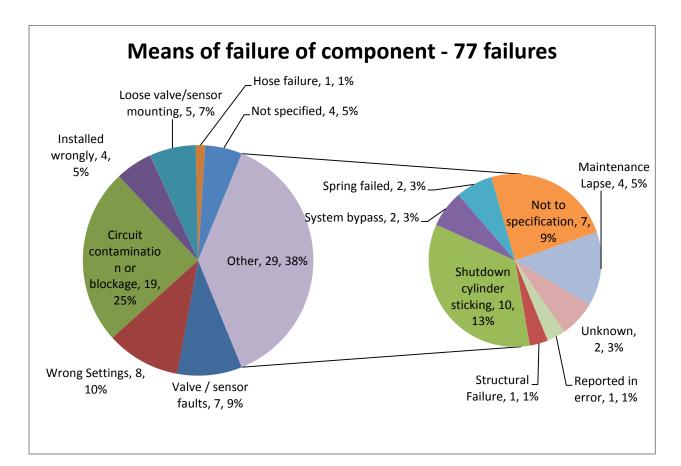



Figure 37

5.0 MINERS' RECOMMENDATIONS FOR PREVENTION

The ancillary report (Annexure A) prompts for design and/or maintenance/testing changes that would prevent / minimise failure as shown below:

Causal factors:		
	If more space is required, p	lease attach additional p
Would a design change prevent or minimise failure?	Yes If yes, describe how below	No
	If more space is required, p	lease attach additional p
Nould a Code D overhaul change prevent/minimise failure?	Yes If yes, describe how below	No
Would a maintenance / testing change prevent/minimise failure?	Yes If yes, describe how below	No

Figure 39 Excerpt from ancillary report

This part of the study compiles the design, maintenance and testing recommendations proposed by the end users and presents them for the major contributors to the 2012 failures.

5.1 MAJOR CONTRIBUTORS

Table 5 below ranks the contributors to the 2012 failures. Essentially, the same as Table 1 but drills down into a lower level of component categories such as fixed connections, open joints, etc.

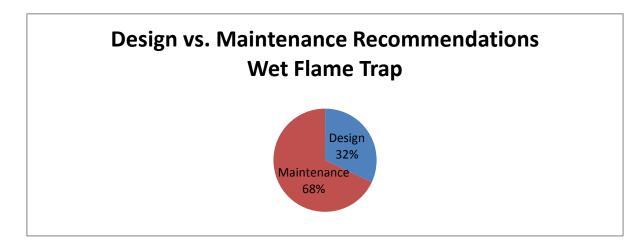
Rank	Major Component	No. of failures	%
1	Wet flame trap	47	26.0%
2	Shutdown cylinders or solenoid	39	21.5%
3	Fixed connection	38	21.0%
4	Other circuit control valve failure	15	8.3%
5	Open joints	12	6.6%
6	Cooling system sensors	7	3.9%
7	Other	7	3.9%
8	Water level sensors	6	3.3%
9	Structural failures	3	1.7%
10	Positive flame trap element	2	1.1%
11	Engine oil pressure sensors	2	1.1%
12	All or multiple sensor failure	2	1.1%
13	Exhaust temperature sensors	1	0.6%
14	Excessive surface temperature	0	0.0%
	Total number of failures in 2012	181	100%

Table 5Contributors to component failure

The following pages list the design and maintenance/testing recommendations from the ancillary reports of 2012 for the following major contributors:

Rank	Major Component	No. of failures	%
1	Wet flame trap	47	26.0%
2	Shutdown cylinders or solenoid	39	21.5%
3	Fixed connection	38	21.0%
4	Other circuit control valve failure	15	8.3%
5	Open joints	12	6.6%
6	Cooling system sensors	7	3.9%
8	Water level sensors	6	3.3%
	Total number of failures in 2012	164	90.6%

Table 6


Major contributors to component failure

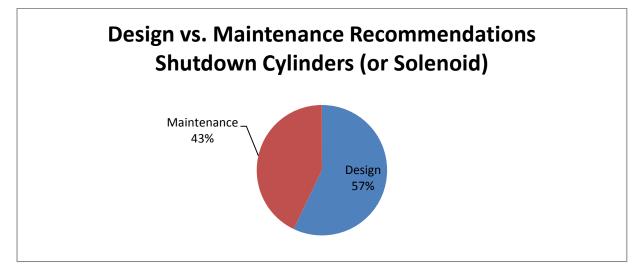
5.2 WET FLAME TRAP

Failures in 2012		Failures	% Contribution	Contributor Rank	
181		47	26.0	1	
No.	Design recommendations				
1		More reliable Humphrey valves			
2	Split diaphragms in Humphrey valves				
3	Solid or closed cell foam filled float				
4	System to hose all breathers				
5	Float actuator going out of adjustment				
6	Introduce a waste-gate valve				
7	Wire braid hoses				
8	Individual float test procedures (without crimping hoses)				
9	Float assembly magnets (1 issue)				
No.	Maintenance / Testing recommendations				
1	More frequent cleaning of the scrubber (with detergent)				
2	Daily flushing of the scrubber				
3	Frequent replacement of rubber diaphragms on Humphrey valves				
4	Clean carbon build-up in orifice				
5	Clean / blow breathers				
6	More frequent change-out of Humphrey valves				
7	Inspect / replace rubber diaphragms / gaskets				
8	Education and training on the importance of maintaining / testing safety functions				
9	More frequent proof testing (not function testing)				
10	Plugging of air horns				
Table 7	1				

Table 7

The comments listed in the tables above are the various unique entries from the ancillary reports and are not ranked in any order. The pie chart below consolidates the numbers of design vs. maintenance/testing recommendations from the ancillary reports and is not directly derived from the number of listings in the tables above.

5.3 SHUTDOWN CYLINDERS OR SOLENOID

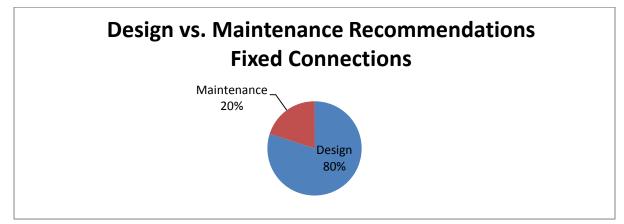

Failures in 2012	Failures	% Contribution	Contributor Rank
181	39	21.5	2

No.	Design recommendations
1	Cylinder position to be fixed and not adjustable
2	Better access to check and install bolts
3	Filter / lubricator rather than just filter
4	Better means of draining water trap(ped)
5	Better wiper seal

No.	Maintenance / Testing recommendations
1	Check for damage / cracked brackets
2	Tension checks
3	Increased maintenance of filters, lubricators and breathers
4	Users suggest increased maintenance
5	Shorter replacement intervals

Table 8

The comments listed in the tables above are the various unique entries from the ancillary reports and are not ranked in any order. The pie chart below consolidates the numbers of design vs. maintenance/testing recommendations from the ancillary reports and is not directly derived from the number of listings in the tables above.


5.4 FIXED CONNECTIONS

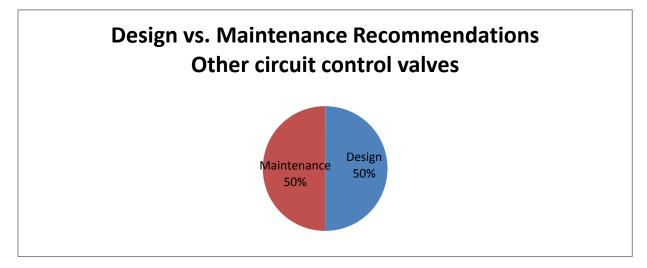
38 Design recom	21.0	3
Design recom		
Design recom		
	mendations	
dditional stay for turbo		
urbo brace		
ghter manufacturer tolerances		
ne threads required		
amaged gaskets		
Incorrect installation		
Include design tolerances on drawings		
Install studs so bolt length issues will not occur		
lanifold out of specification		
roken bolts		
ush/drain plug locking mechanism required		
o torque settings provided in OEM procedure	s	
Mounting holes and threads out of specification		
Surface imperfections/wear in threaded sections		
Mounting face tapered and under minimum thickness - Out of specification		
asket material too hard		
	dditional stay for turbo urbo brace ghter manufacturer tolerances ne threads required amaged gaskets correct installation clude design tolerances on drawings stall studs so bolt length issues will not occur lanifold out of specification roken bolts ush/drain plug locking mechanism required o torque settings provided in OEM procedure lounting holes and threads out of specificatio urface imperfections/wear in threaded section lounting face tapered and under minimum th	urbo brace ghter manufacturer tolerances ne threads required amaged gaskets correct installation clude design tolerances on drawings stall studs so bolt length issues will not occur lanifold out of specification roken bolts ush/drain plug locking mechanism required o torque settings provided in OEM procedures lounting holes and threads out of specification urface imperfections/wear in threaded sections lounting face tapered and under minimum thickness - Out of specific

No.	Maintenance / Testing recommendations
1	Lapse e.g. cover on top of fuel pump missing
2	More frequent component replacement
3	Support bracket not fitted
4	Check bolts/nuts not torqued (often loose)
Table 0	

Table 9

The comments listed in the tables above are the various unique entries from the Ancillary reports and are not ranked in any order. The pie chart below consolidates the numbers of design vs. maintenance/testing recommendations from the ancillary reports and is not directly derived from the number of listings in the tables above.

5.5 OTHER CIRCUIT CONTROL VALVES

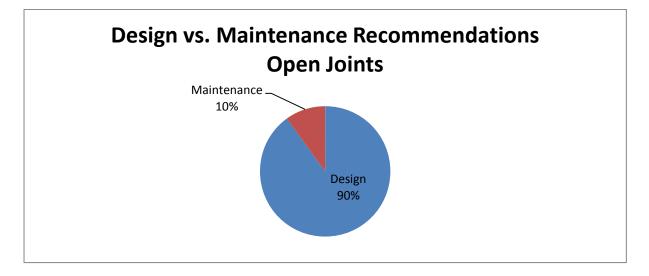

Failur	es in 2012	Failures	% Contribution	Contributor Rank
	181	15	8.3	4
No.		Design	recommendations	
1	Single line componer	nt		
2	Fixed needle valves			
3	Tamper proof adjusti	ment screws		
4	Fixes orifice sizing			
5	Tamper proofing of a	ir regulators		
6	Springs			
7	Pressure regulators			

8 Users suggest the need for more frequent replacement intervals than suggested by OEM

Maintenance / Testing recommendations
Pneumatic filters and lubricator maintenance
More frequent replacement of valves
Increased monitoring of air pressure
Thorough scrubber cleaning with conditioner (daily?)
Cleaning plungers regularly
More frequent replacement of filters and diaphragm rubbers
Draining air receivers

Table 10

The comments listed in the tables above are the various unique entries from the ancillary reports and are not ranked in any order. The pie chart below consolidates the numbers of design vs. maintenance/testing recommendations from the ancillary reports and is not directly derived from the number of listings in the tables above.

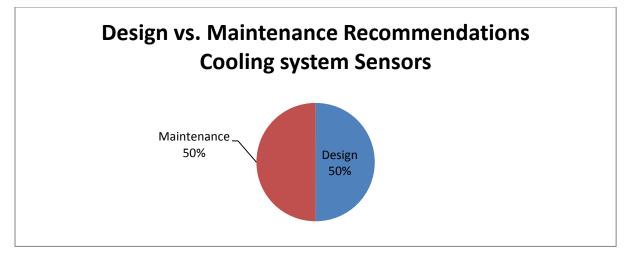


5.6 **OPEN JOINTS**

Failur	es in 2012	Failures	% Contribution	Contributor Rank
	181	12	6.6	5
No.		Design	recommendations	
1	Incorrect installation			
2	Turbo mounting studs	broken		
3	Loose injectors			
4	Excessive gap			
No.		Maintenance /	Testing recommendations	

No.		Maintenance / Testing recommendations
1	Maintenance Lapse	
Table 3	11	

The comments listed in the tables above are the various unique entries from the ancillary reports and are not ranked in any order. The pie chart below consolidates the numbers of design vs. maintenance/testing recommendations from the ancillary reports and is not directly derived from the number of listings in the tables above.

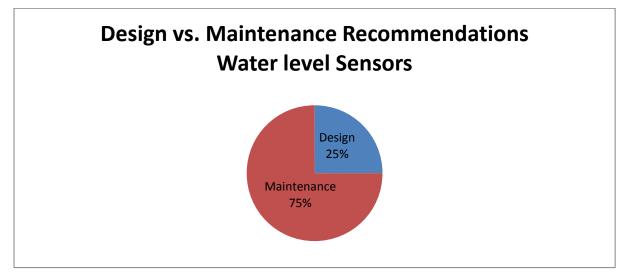


5.7 COOLING SYSTEM SENSORS

Failur	es in 2012	Failures	% Contribution	Contributor Rank
	181 7		3.9	6
No.		Design	recommendations	
1	Increased componen	t reliability		
2	Tamper proofing			
No.		Maintenance /	Testing recommendations	
1	Review replacement	intervals		
2	Regular function test	ing (proof testing)		
3	Misuse / Abuse			

Table 12

The comments listed in the tables above are the various unique entries from the ancillary reports and are not ranked in any order. The pie chart below consolidates the numbers of design vs. maintenance/testing recommendations from the ancillary reports and is not directly derived from the number of listings in the tables above.



5.8 WATER LEVEL SENSORS

Failur	es in 2012	Failures	% Contribution	Contributor Rank
	181	6	3.3	8
No.		Design recommendations		
1	Need for tamper proof	Need for tamper proofing		
No.		Maintenance /	Testing recommendations	
1	Incorrect adjustment			
2	Misuse / Abuse			
3	Lapse			
Table 1	2			

Table 13

The comments listed in the tables above are the various unique entries from the ancillary reports and are not ranked in any order. The pie chart below consolidates the numbers of design vs. maintenance/testing recommendations from the ancillary reports and is not directly derived from the number of listings in the tables above.

5.9 CONCLUSIONS

Design vs. maintenance recommendations apportioning reveal the following:

Maintenance recommendations dominate in wet flame trap and water level sensors, while design recommendations dominate in shutdown cylinders, fixed connections and open joints. Equal weighting of design and maintenance recommendations is noticed in other circuit control valves and cooling system sensors.

However, on critical analysis, it is concluded that a substantial portion of maintenance recommendations proposed could be obviated by incorporating appropriate design modifications. Such an approach would fall in line with the 3-step method proposed in classical risk management practices including AS 4024 – Safety of Machinery:

- Step 1: Inherently safe design measures
- Step 2: Safeguarding and possibly complementary protective measures
- Step 3: Information for use about residual risk.

6.0 OEM STATISTICS

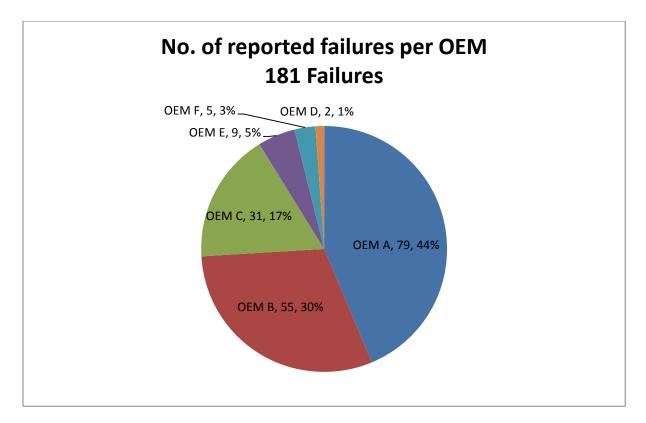
This section presents an analysis of non-specific OEM failures against their inventory levels.

OEM-specific Failure Analysis will be provided to each OEM separate from this report as Addenda.

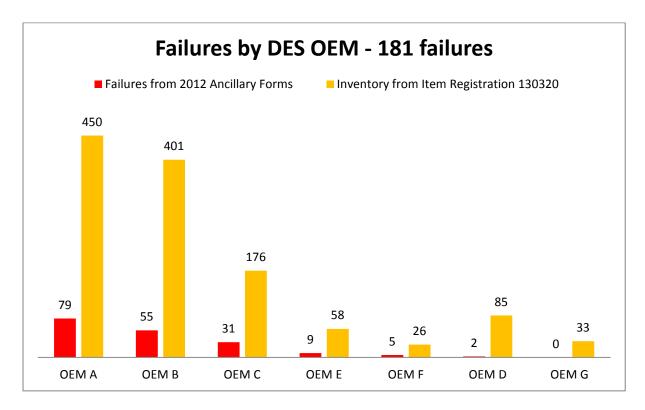
A consolidated list of major OEMs including their past OEM references and the number of machines in the current inventory* is shown in Table 14.

Current OEM	Machines in Inventory
OEM A	450
OEM B	401
OEM C	176
OEM D	85
OEM E	58
OEM F	26
OEM G	33
Total machines in Inventory (major OEMs)	1229

* Source: Item Registration 130320.xls received on 27.03.2013; DES Item Reg - Only Current lists a total of 1250 machines.

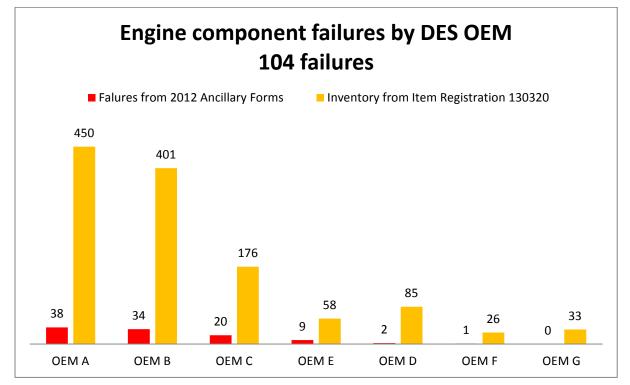

Table 14

6.1 **REPORTED FAILURES PER OEM**


Listed below are the reported failures per OEM.

OEM	2012 Failures	Failures % of 2012	Machines in Inventory	Failures % of Inventory
OEM A	79	44%	450	18%
OEM B	55	30%	401	14%
OEM C	31	17%	176	18%
OEM E	9	5%	58	16%
OEM F	5	3%	26	19%
OEM D	2	1%	85	2%
OEM G	0	0%	33	0%
Total	181	100%	1229	

Table 15


The OEM-wise distribution of these failures along with their respective inventory numbers (refer Table 15) are recorded in the plot below:

6.2 INTENTIONALLY BLANK

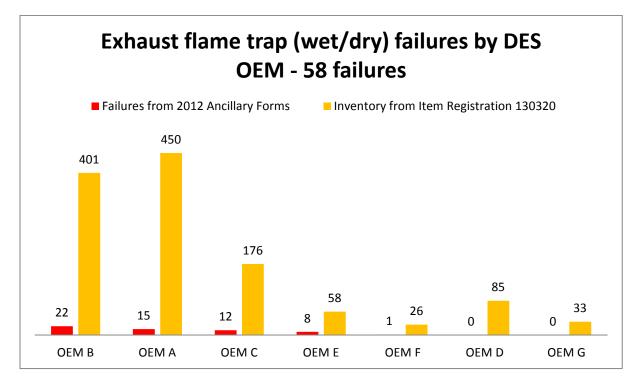
This page is intentionally blank.

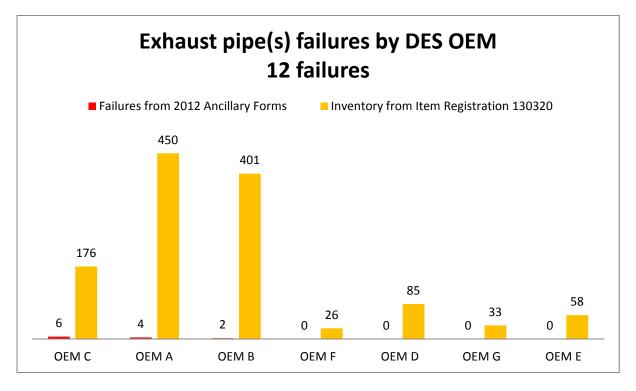
6.3 ENGINE COMPONENT FAILURES BY DES OEM

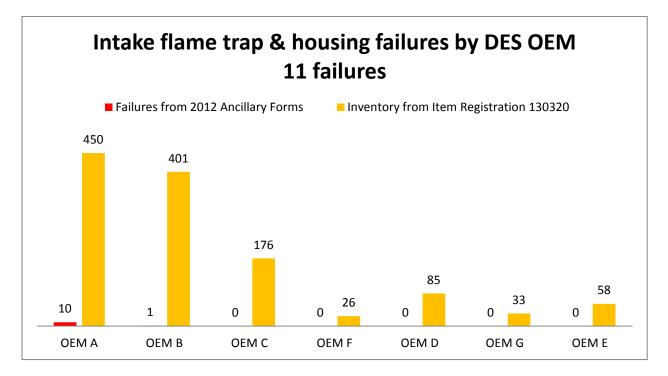
The OEM-wise distribution of the engine component failures along with their respective inventory numbers (refer Table 15) are recorded in the plot below:

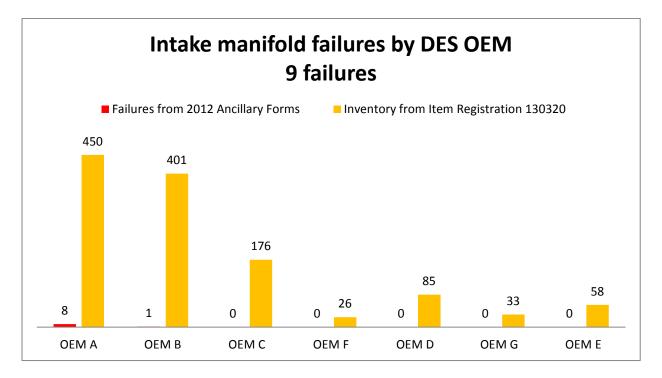
Figure 49

Out of the 104 Engine component failures, major contributors were shown in Table 2 which is repeated below:

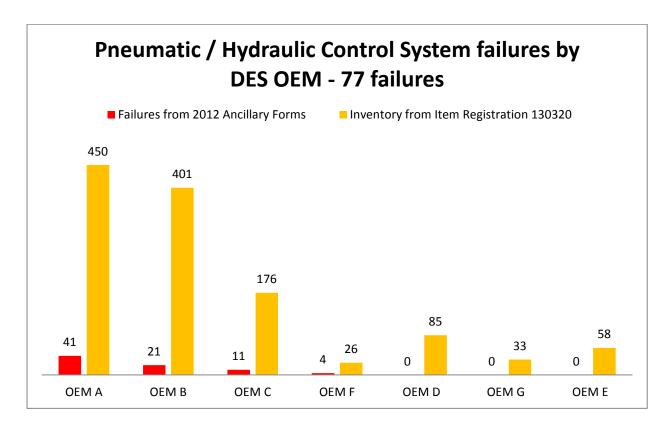

Engine Component	Failures	% Contribution to 2012 failures
Exhaust flame trap (wet/dry)	58	32%
Exhaust pipe(s)	12	7%
Intake flame trap & housing	11	6%
Intake manifold	9	5%


Table 2 (repeated)


Major contributors to engine component failure


The following sections present plots on each of the above engine component failures vs. the OEMs. Some entries have been omitted due to incomplete data.

6.3.1 EXHAUST FLAME TRAP (WET/DRY) FAILURES

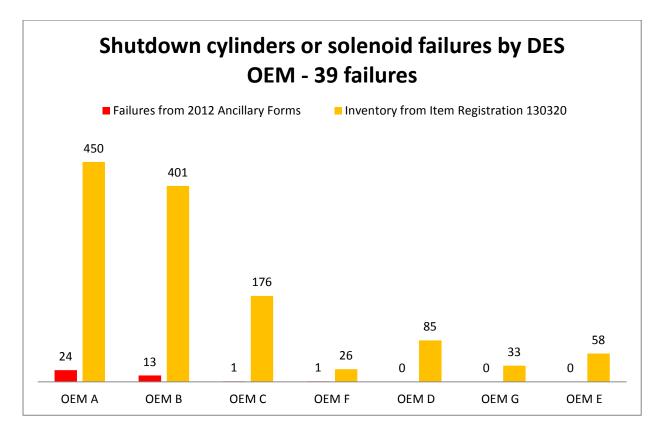


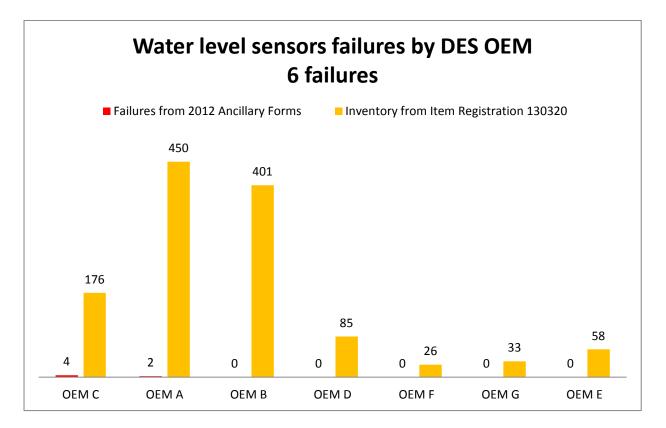
6.4 PNEUMATIC / HYDRAULIC CONTROL SYSTEM BY DES OEM

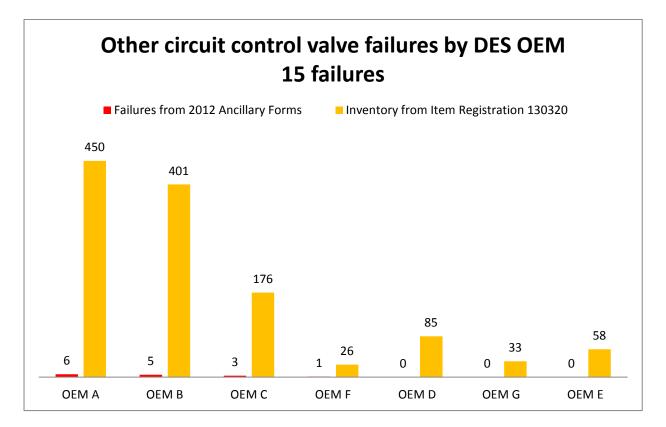
The OEM-wise distribution of the pneumatic/hydraulic control system failures along with their respective inventory numbers (refer Table 15) are recorded in the plot below:

Figure 54

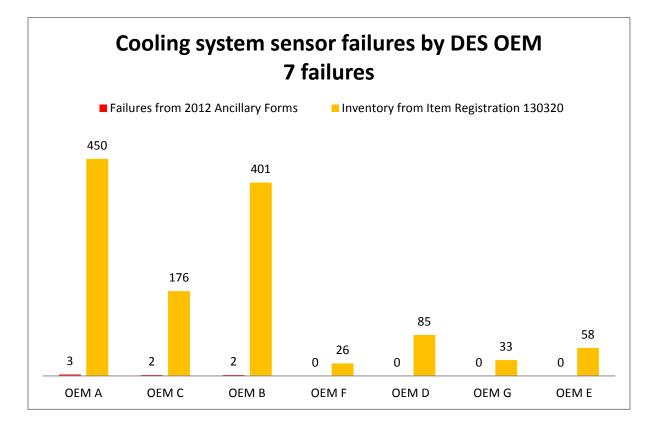
Out of the 77 Pneumatic / Hydraulic control system component failures, major contributors were shown in Table 4 which is repeated below:

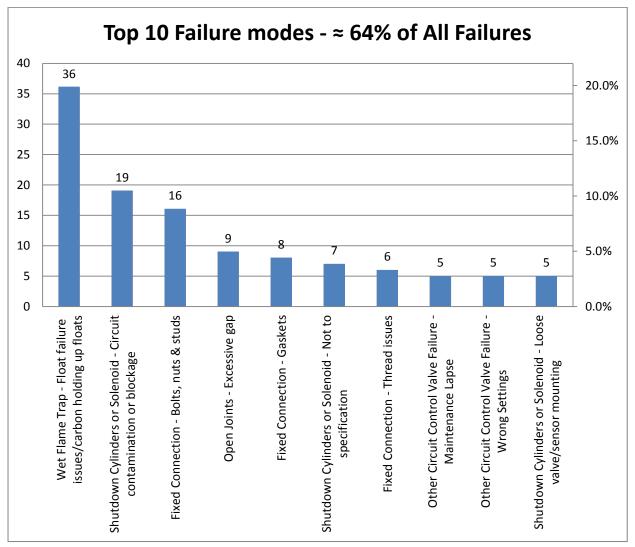

Pneumatic / Hydraulic Control System Component	Failures	% Contribution to 2012 failures
Shutdown cylinders or solenoid	39	22%
Other circuit control valve failure	15	8%
Cooling system sensors	7	4%
Water level sensors	6	3%


Table 4 (repeated)


Major contributors to pneumatic / hydraulic control system component failure

The following sections present plots on each of the above control system component failures vs. the OEMs . Some entries have been omitted due to incomplete data.


6.4.1 SHUTDOWN CYLINDERS OR SOLENOID FAILURES



6.4.4 COOLING SYSTEM SENSOR FAILURES

7.0 CONCLUSIONS

7.1 TOP 10 FAILURE MODES

The top 10 failure modes from the 181 ExDES failures during the period January to December 2012 in the NSW underground coal mining industry are shown below:

7.2 **PROPOSED DESIGN VS. MAINTENANCE RECOMMENDATIONS**

Maintenance recommendations dominate in wet flame trap and water level sensors, while design recommendations dominate in shutdown cylinders, fixed connections and open joints. Equal weighting of design and maintenance recommendations is noticed in other circuit control valves and cooling system sensors.

However, a substantial portion of maintenance recommendations proposed could be obviated by incorporating appropriate design modifications. This would help alleviate the extent of breakdown maintenance required and resources could be better deployed towards routine maintenance.

7.3 FUNCTIONAL SAFETY MANAGEMENT

The data analysis clearly reveals that almost all failures were due to systematic* issues as opposed to random hardware failures**. An effective mechanism to deal with the systematic issues which involve both the OEM and the End-users, as proven in other safety critical industries, would be to introduce a Functional Safety Management regime resulting in increased accountability of both parties.

- Systematic failure: failure; related in a deterministic way to a certain cause, which can only be eliminated by a modification of the design or of the manufacturing process, operational procedures, documentation or other relevant factors. (IEC/AS 61508.4-2010)
- ** Random failure: failure; occurring at a random time, which results from one or more of the possible degradation mechanisms in the hardware.
 (IEC/AS 61508.4-2010)

0-0-0-0

8.0 ACRONYMS & DEFINITIONS

DES	Diesel Engine Shutdown System
End-user	Mine site/coal operation
ExDES	Explosion Protected Diesel Engine System
Industry	NSW underground coal mining industry
MDA	Mine Design Approval (NSW Trade & Investment)
MDR	Mine Design Registration (NSW Trade & Investment)
OEM	Original Equipment Manufacturer

9.0 STATUS OF DOCUMENT

9.1 LIABILITY

This report is based largely on the information provided by NSW Trade & Investment Mine Safety, OEMs, End-users and other stake holders.

Shakti Corp Pty Ltd, its employees and its reviewers accept no liability, consequential or otherwise, for the correctness of the standards and/or the references on which the report is based or from the use of the results obtained from this report.

To the extent permitted by law,

- 1. Shakti Corp excludes all warranties, conditions and the consumer guarantees, whether implied by law or otherwise; and
- 2. Shakti Corp's liability under in relation to the services it provides is limited to, at its option:
 - a. Supplying of the services again; or
 - b. Payment for the cost of having the services supplied again.
- 3. Shakti Corp is not liable to the Client for any indirect or consequential loss or damage (including loss of revenues, profits, business or goodwill) which arises out of or in connection with the supply of these services.

10.0 BIBLIOGRAPHY

- 1. Safety Bulletin SB12-01 Inservice failures of explosion protected diesel engine systems during 2010 and 2012
- 2. ExDES 56-1-m Incidents 130123.xls NSW Trade & Investment Mine Safety.
- 3. 56-1-m ExDES All Data 130311 EXTERNAL.xls NSW Trade & Investment Mine Safety.
- 4. Copy of Item Registration 130320.xls NSW Trade & Investment, Mine Safety.
- 5. 130123 ExDES 56-1-m Incident Analysis for 2012.xls NSW Trade & Investment, Mine Safety.
- 6. DES Design rego holders & takeovers.xls NSW Trade & Investment, Mine Safety.
- Report 13012_V1R4 Ex-DES Failures Analysis 2012 DTI Internal Report, May 2013 – NSW Trade & Investment Mine Safety

Annexure A

Ancillary Report

Ancillary Report - In Service Failure of **Explosion Protected Diesel Engine** Systems, Clause 56(1)(m)

Pursuant to Clause 59 of the Coal Mine Health and Safety Regulation 2006, this form is gazetted and additional to the Coal Notification of Incident Form. This Report must be completed and submitted to NSW Trade & Investment within 21 days for all notifiable incidents subject to Clause 56(1)(m) in relation to explosion protected diesel engine systems.

Date of incident:	Mine Identification No). (if known):	
2 Machine identification			
IDR ¹ or MDA ¹ :	N	IIR ¹ :	
lachine Manufacturer:		fachine Model:	
lachine Owner:			
3 Last inspections			
ate of last Code D:	Registered Service	e Facility (RSF) No.:	
ate the failed component / part of syste	em was last inspected or tested:	o uz so o 20 iliona di la cabitani	
Spark external to engine Flame	evidence of: (only tick the most likely external to engine Surface tempe el engine system compone m failed? (tick one – root cause only)	rature to exceed 150 deg C ent OR Control system:	
Exhaust flame trap (wet/dry) Exhaust manifold Intake flame trap & housing Forced induction (turbo / supercharg	☐Engine blo ☐Intake mar ☐Exhaust pi	ifold If one of these compo pe(s) selected, go to 6 below	
Pneumatic/hydraulic control system	Electrical o	control system If one of these control selected, go to 7.	systems is
6 Failure Mode of Engine C	omponent	land to set the set of the set of the	
/hich major component failed?	How did the major component fail'	?	
ick one from this column:	Tick one only (initial cause) from the Exhaust carbon holding up floats Float failure issues Structural failures	Mater below LMCO2 when engine	e stops
Fixed connection (issues):	Bolts, nuts & studs Gaskets Thread issues	Damage Other	
] Open joints (issues):	Surface flatness / finish Excessive gap Thread issues	☐ Bolts, nuts & studs ☐ Damage ☐ Other	
Positive flame trap element:		Other	
Structural failures:	Fatigue / Cracking Corrosion Physical contact damage	Catastrophic failure	
Excessive surface temperature:	Cooling system failure	Other	
Positive flame trap element: Structural failures: Excessive surface temperature: Other (please specify the component)	Damage Excessive internal clearances Fatigue / Cracking Corrosion Physical contact damage Cooling system failure	Catastrophic failure	

Go to Question 8.

¹ MDR – Mine Design Registration number. MDA – Mine Department Approval number. MIR – Mine Item Registration number.
² LWCO – Low Water Cut-Out.
COA-AR ExDES Ancillary Report Form.doc
Page

Page 1 of 3

of the local division of the local division of the	A DESCRIPTION OF THE OWNER	A CONTRACTOR OF MAN		
7 Control	eve	tem	121	IIFO
	- a ya	(enn	Tall	ure

7 Control system failure Only answer this question if directed to do so from Question 5.

Which component failed? (tick one from this column)	How did the control system fail? (tick one from this column)
Water level sensors Shutdown cylinders or sciencid Cooling system sensors	Valve/sensor faults Wrong settings Circuit contamination or blockage
Exhaust temperature sensors Engine oil pressure sensors Other circuit control valve failure All or multiple sensor failure	Installed wrong Loose valve/sensor mounting Hose failure
Other (please specify)	Other (please specify)

8 Recommendations for prevention		
ausal factors:		
	If more space is required, pl	onco attach additional pag
ould a design change prevent or minimise failure?	Yes If yes, describe how below	No
build a design change prevent or minimise landrer		
	If more space is required, pl	ease attach additional pag
ould a Code D overhaul change prevent/minimise failure?	Yes If yes, describe how below	No
ould a maintenance / testing change prevent/minimise failure?	Yes If yes, describe how below	□No
da a maintenance r testing change prevent minimise railare?		
	If more space is required, pl	ease attach additional pag
Other Comments		
	If more space is required, pl	ease attach additional nac

Have you informed the manufacturer of this failure?	s 🗋 No	
Signature of Manager of Mechanical Engineering:	Name:	
	Date signed:	

COA-AR ExDES Ancillary Report Form.doc

Page 2 of 3

NOTES

- Clause 56(1)(m) of the Coal Mines Health and Safety Regulation 2006 requires notification of any incident or matter involving the 'in-service failure of the explosion protection characteristics of explosion protection plant. This Ancillary Report is to provide a consistent approach for all underground coal mines.
- The AS 3584.2 standard stipulates the explosion protection characteristics and defines the components (characteristics) which form part of an explosion protected diesel engine system.
- All 'diesel engine system used in underground mines at a coal workplace' must be both design and item registered under Part 5.2 of the OHS Regulation 2001 before use.
- 4. For the purpose of clarifying the above provisions, the Department requires the following to be reported 'Any incident or matter where it is evident an explosion protected diesel engine system has been (or is likely to have previously been) operating in a non-explosion protected condition'. A non-explosion protected condition means a condition

which has potential to ignite either; coal dust on the surface of the engine; or methane in the surrounding atmosphere.

- Examples of matters which must be notified include, (but are not limited to) –
 - any explosion protection characteristic failures when discovered during use, routine maintenance or overhaul;
 - b) the failure of a diesel engine system to shut down when required by the control sensors, for example – loss of water in the scrubber; excessive system temperature (above 150°C); failure of engine cooling system, etc;
 - c) a catastrophic failure of the diesel engine system which protrudes external to the engine, such as turbochargers, superchargers, piston, valves, connecting rods, etc.;
 - d) the failure of a primary and backup control sensor, for example temperature, floats, etc;
 - e) the failure of an explosion protected open joint which exceeds the specified dimensions for explosion protection;
 - f) looseness of any explosion protected fixed joint (gasket joint);
 - g) deterioration or significant damage to any dry type flame trap;
 - h) the failure or loosening of any screw type explosion protection joint;
 - the failure to replace any explosion protected component, such as a cap, plug, flame trap or other like component, after carrying out maintenance activities;
 - any evidence of a fire or spark external to the explosion protected joints, flametrap or water conditioner;
 - k) any catastrophic failure of a turbo in a dry type exhaust system;
 - failure of the cooling system, and/or sensors such that the external surface temperature of the diesel engine and /or exhaust gas temperature at the flametraps appears to have exceeded 150°C;

COA-AR ExDES Ancillary Report Form.doc

- m) evidence of thermal degradation of an exhaust filter; and
- n) the water level not being at or above the minimum safe water level when the diesel engine shuts down automatically.
- Examples of matters which are not required to be notified include, (but not limited to) –
 - a) the failure of a single sensor where backup sensors are installed, functional and the diesel engine system is not in a un-explosion protected condition; for example –
 - a single exhaust float failure where a backup float is fitted and functional;
 - a single temperature sensor failure where a backup sensor is fitted and functional;
 - b) the failure of an engine to start;
 - c) stopping of the engine system because a sensor has operated;
 - d) failing of the engine cooling system where the engine shuts down; and
 - e) any other failure which does not render the diesel engine system in an un-explosion protected condition.

Please contact your local NSW Trade and Investment office if you require assistance completing the form.

NSW Trade and Investment Offices located in coal mining regions

Hunter Region

Maitland PO Box 344 Hunter Region Mail Centre NSW 2310 Phone: (02) 4931 6666 Fax: (02) 4931 6790 maitland.coalnotification@dpi.nsw.gov.au

Singleton PO Box 51 Singleton NSW 2330 Phone: (02) 6571 8788 Fax: (02) 6572 1201 singleton.coalnotification@dpi.nsw.gov.au

South East Region

Lithgow PO Box 69 Lithgow NSW 2790 Phone: (02) 6350 7888 Fax: (02) 6352 3876 lithgow.coalnotification@dpi.nsw.gov.au

Wollongong PO Box 674 Wollongong NSW 2520 Phone: (02) 4222 8333 Fax: (02) 4226 3851 wollongong.coalnotification@dpi.nsw.gov.au

Annexure B

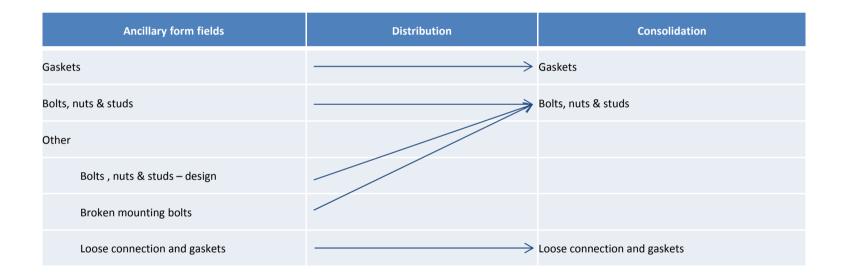
Consolidation of Failures

Bases

ExDES Failure Analysis 2012 Exhaust Flame Trap Failure Consolidation

Ancillary form fields	Distribution	Consolidation
Exhaust carbon holding up floats	>	Carbon buildup
	7	Component failure - orifice
Float failure issues		Component failure - humphrey valve
Water below LWCO when engine stops		Component failure - other
Structural failures	$ \longrightarrow $	Structural failure
Blocked breather	\longrightarrow	Blocked breather
Excessive backpressure		Accident
Other		Need for more frequent component maintenance
Mechanical damage to the scrubber tank		Maintenance Lapse
Pressure relief valve		Safety system bypass
Crimped Hose	>	Unknown
Not Specified		Not Specified

Shakti Corp Pty Ltd


ExDES Failure Analysis 2012 Exhaust Pipes Failure Consolidation

Ancillary form fields	Distribution	Consolidation
Surface Flatness		Surface Flatness
Gaskets	>	Gaskets
Bolts, nuts & studs		Bolts, nuts & studs
Other		
Bolts , nuts & studs – design		
Bolts, nuts & studs – maintenance		
7/16 JIC cap missing	>	7/16 JIC cap missing
Not Specified	>	Not Specified

ExDES Failure Analysis 2012 Intake Flame Trap & Housing Failure Consolidation

Ancillary form fields	Distribution	Consolidation
Excessive gap		Excessive gap
Excessive internal clearances		
Fatigue / Cracking		Fatigue / Cracking
Gaskets		Gaskets
Surface Flatness		Surface Flatness

ExDES Failure Analysis 2012 Exhaust Manifold Failure Consolidation

ExDES Failure Analysis 2012 Shutdown Cylinders or Solenoid Failure Consolidation

Ancillary form fields	Distribution	Consolidation
Loose valve/sensor mounting		Loose valve/sensor mounting
Installed wrong		
Wrong Settings		Installed wrongly/Wrong Settings
Valve / Sensor faults		
Circuit contamination or blockage		Circuit contamination or blockage/Shutdown cylinder sticking
Other		
Shutdown cylinder sticking	\langle	
Not specified	\rightarrow	Not specified
Structural Failure	\longrightarrow	Structural Failure
Spring failed	\longrightarrow	Spring failed
internal buffer in shutdown cylinder undersized		Not to specification

ExDES Failure Analysis 2012

Other Circuit Control Valve Failure

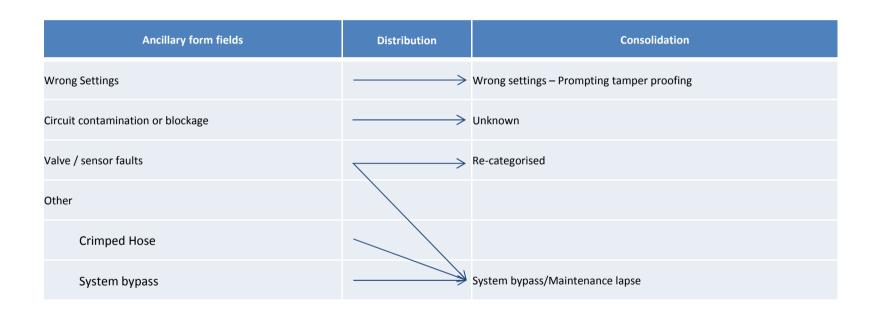
Failure Consolidation

Ancillary form fields	Distribution	Consolidation
Installed wrongly	\longrightarrow	Installed wrongly
Valve / sensor faults		Valve / sensor faults
Wrong Settings		Wrong Settings - Prompting tamper proofing
Circuit contamination or blockage	$\langle \rangle$	Maintenance Lapse
	>	Unknown
Loose valve/sensor mounting		
Hose failure	\longrightarrow	Hose failure
Other		
Structural Failure		

Shakti Corp Pty Ltd

ExDES Failure Analysis 2012

Cooling System Sensors


Failure Consolidation

Ancillary form fields	Distribution	Consolidation
Re-categorised		
Valve / sensor faults	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Valve / sensor faults
Circuit contamination or blockage		Maintenance Lapse
	A	Not specified

ExDES Failure Analysis 2012

Water Level Sensors

Failure Consolidation

