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EarthByte Group
• Geology and Geophysics Research Group at the 

University of Sydney 

• established in 2002

• www.earthbyte.org

• Philosophy: Build an e-research community 
through shared open software and digital data

• Current focus on critical mineral exploration, e.g. 
copper, nickel, cobalt, REEs

Ehsan Farahbakhsh Nathan WakeVera Nolte-Wilson

http://www.earthbyte.org/


 Essential in a range of strategic sectors – renewable energy, modern technologies, ...

Critical minerals/metals

 Strategic investment at federal and state level



Mining companies injected a record 
amount of $23.6 billion into the 
NSW economy in FY23, +41%

Earth Systems Research Project GEOL3888: 
using machine learning to prospect for 
minerals in the Lachlan fold belt



Why machine learning and AI in exploration?



Today’s focus: Nickel, cobalt and copper

Ni and Co – steel manufacture, specialty alloys, aviation, aerospace & chemical industries 

Cu – power generation, transport, ...



Lachlan Orogen exploration potential

 Rich metallogenic endowment from discrete 
orogenic-magmatic events along active margin

 Lateritic Ni-Co deposits

 - Mafic-ultramafic source rocks
- Serpentinised ophiolites (Camb-Ord)
- Mafic-ultramafic intrusions (Ord-Sil)

 - Supergene enrichment Ni-Co
- Cenozoic deep lateritic weathering

 Diverse range of Cu-rich deposits 

 NSW remains underexplored

 Multi-dimensional datasets can be analysed using 
machine-learning to advance exploration

Huston et al (2016)

Lachlan Orogen Metallogenic Diversity



• Source: Geodynamic setting and associated magmas 
and fluids required to extract ore components (melts or 
fluids) from mantle and/or crustal sources

• Transport: Lithospheric structural architecture that 
provides pathways for fertile magmas and fluids, 
transferring ore components from source to trap

• Trap/Deposition: Lateritisation concentrates ore 
components in the host rocks and/or structures

• Preservation: Low relief and tectonic stability best to 
preserve the ore components

Lateritic Ni-Co Minerals System

• Different parts of the system can be mapped via specific combinations of geological and geophysical features 



Thuddungra (Nico Young) lateritic Ni-Co (Jervois, 2018)

Nyngan (West Lynn) lateritic Ni-Co (Alchemy, 2017)

Syerston (Owendale) lateritic Ni-Co (CleanTeq, 2017)

Landscapes of Ni-Co deposits



Geophysical 
data and 
derivatives

 300 features derived from 
combined data, 

 grids at 0.01° resolution (~1 km)

Data: Known ore deposit sites, geology, geophysics

Aster remote 
sensing data



20 Geological Layers 34 Features
• Geological boundaries
• Metamorphic facies and isograds
• Faults
• Intrusions
• Rock units

72 Geophysical Layers 288 Features
• Magnetic
• Gravity
• Radiometric
• Remote sensing

Data Layers and Features



Data Type Data Layers

Geological Rock units
Faults 

Unconformities
Metamorphic 

facies

Magnetics RTP 
transformation
+ various filters

Gravity Bouguer anomaly, 
derivatives

Radiometrics K, Th, U 
Ratios

Remote sensing ASTER 
multispectral

Terrain DEM

District No. of 
Occurrences

Major
Resources

Source
rocks

Thuddungra 8 Yes Ophiolite

Syerston 5 Yes Mafic-ultramafic 
Intrusion

Homeville 2 Yes Mafic-ultramafic 
Intrusion

Nyngan 3 Yes Mafic-ultramafic 
Intrusion

Bungonia 16 No Unknown

 Lateritic Ni-Co clusters listed from south to north

 Bungonia – exotic Co occurrences (source rock unknown)

 Examples of major resources:
- Nico Young (Thuddungra) – 53.6 Mt @ 0.66% Ni & 0.05% Co
- Sunrise (Syerston) – 160 Mt @ 0.56% Ni & 0.09% Co
- Collerina (Homeville) – 17.9 Mt @ 0.89% Ni & 0.06% Co

Data: a more detailed look



A generative adversarial network (GAN) is a deep learning architecture.
It trains two neural networks to compete against each other to generate new data from a given training dataset

Machine-learning: training
Problem 1: Shortage of training data (< 30 with > 300 features)! GAN to the rescue.

Nickel ore sample

Modified from 
datenwissen.com



Improved GAN: SMOTE-GAN

Sharma et al. (2022)

 Synthetic Minority Oversampling Technique

 Interpolates between the “minority class” nearest 
neighbours to suggest new training samples. 

Our minority class are known ore deposits

 SMOTE-GAN plays a ‘game’ between generator and 
discriminator to find realistic ore deposit samples

Other SMOTE-GAN applications:

Financial fraud detection

Insurance risk assessment

Healthcare product 
development

Marketing



Problem 2: We don’t have a database of non-deposits (negative examples)

West Lynn

Nico Young

Owendale Blaikie and Kunzmann (2020)

Positive examples (ore deposits) Unlabelled examples
Particular features

Wide range of features



Positive and Unlabelled Bagging
• Positive and unlabelled learning is a semi-

supervised binary classification approach 
that recovers labels from unknown samples 
by learning from positive samples and 
relabelling unknown samples

• The method is applied after SMOTE-GAN to 
separate unknown samples into positive and 
negative samples

West Lynn

Nico Young

Owendale

Negative?

Negative?

Negative?

Distinguish positive and 
negative examples from 
characteristics of a growing 
positive set

Jaskie (2019)



Random Forest for algorithm training

• Random Forest is a popular ensemble 
learning technique that uses multiple 
decision trees for better accuracy and 
robustness.

• It is effective in handling missing and 
noisy data typical in geological 
datasets 

• Its capability to process large datasets 
with many features without needing 
dimensionality reduction is crucial, as 
it ensures no potentially important 
features are omitted, maintaining the 
model's accuracy.



Model 1 Feature importance – all input data (>300 features) 

All data layers 
– Top 15 feature proxies for lateritic Ni-Co

Model 1 – Prospectivity map 
Lateritic Ni-Co mineralisation

Syerston

Thuddungra

Bungonia

Byng

Coolac

Homeville



Model 2 Feature importance  – <10% of all features used

Data layers >0.01 Cut-off 
– Top 15 feature proxies for lateritic Ni-Co

Model 2 – Prospectivity map 
Lateritic Ni-Co mineralisation

Syerston

Thuddungra

Bungonia

Byng

Coolac

Homeville



Model 3 Hypogene (primary) feature selection

Data layers representing / proxies for source rocks
Model 3 – Prospectivity map 
Lateritic Ni-Co mineralisation

Syerston

Thuddungra

Bungonia

Byng

Coolac

Homeville



Model 4 Supergene (secondary) feature selection

Data layers representing / proxies for weathering profiles
Model 4 – Prospectivity map 
Lateritic Ni-Co mineralisation

Syerston

Thuddungra

Bungonia

Byng

Coolac

Homeville



Top Features for successful training

 Examples of four high ranking features:
a) Mean TMI reduce-to-pole phase 2019;  b) Horizontal derivative of DEM;
c) ASTER multispectral AlOH group content; d) Lachlan Orogen_ Rock Unit fault boundaries.

 Training set mineral occurrences are plotted as circles.

d. Fault Boundariesc. AlOH Abundanceb. Digital Elevationa. Magnetics TMI RTP



Targeting
 Key geological features map, highlighting:

 Distribution of Ni-Co source rock units
- Ophiolites 
- Mafic-ultramafic intrusions

 Distribution of other basement rocks 
- Metasedimentary rock units

 Overlain by: 

 Lateritic Ni-Co occurrences (training set)

 Model 2 Lateritic Ni-Co prospectivity map
- moderate to high probabilities 

(yellow-red)



Targeting
Potential new greenfield areas for future 
exploration:

 Coolac-Thuddungra serpentinite belts
Two sub-parallel linear/curvilinear belts
- each extending over +200-300 km

 Syerston-Homeville-Nyngan mafic-ultramafic 
intrusion field
- lobate high-probability feature (~30 x 70 km)

 Byng Volcanics
- 150 km long arcuate feature

 Bungonia region
- Cobalt in manganiferous wads 
(Cenozoic grits/sandstone - source unknown)

Method can easily be scaled to higher resolution 
in target regions 



• Magnetic grids and 
intrusive boundaries are 
the most important data 
layers.

• Important features 
include:

• Standard deviation and 
mean of the first vertical 
derivative of magnetic data

• Dissimilarity of the total 
horizontal gradient of the 
pseudo gravity of magnetic 
data

• Proximity to faulted 
intrusive and rock 
boundaries

Preliminary prospectivity maps for porphyry Cu
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All features (>300) Most important features (<30)

Cu occurrences are weighted by tonnage and grade



www.earthbyte.org

NSW industry 
partners wanted!

ARC Industry 
Fellowships

ARC Linkage

CRC-P

Contact: 
dietmar.muller@sydney.edu.au

Mach

 Machine learning has an enormous potential 
for critical mineral exploration in NSW

 From general to detailed exploration: Easy 
scaling to finer local resolution

 Robust when faced with noisy data
 Additional features can easily be included
 Several ARC and CRC avenues for industry-

government-university collaboration

Conclusions
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