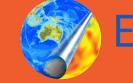
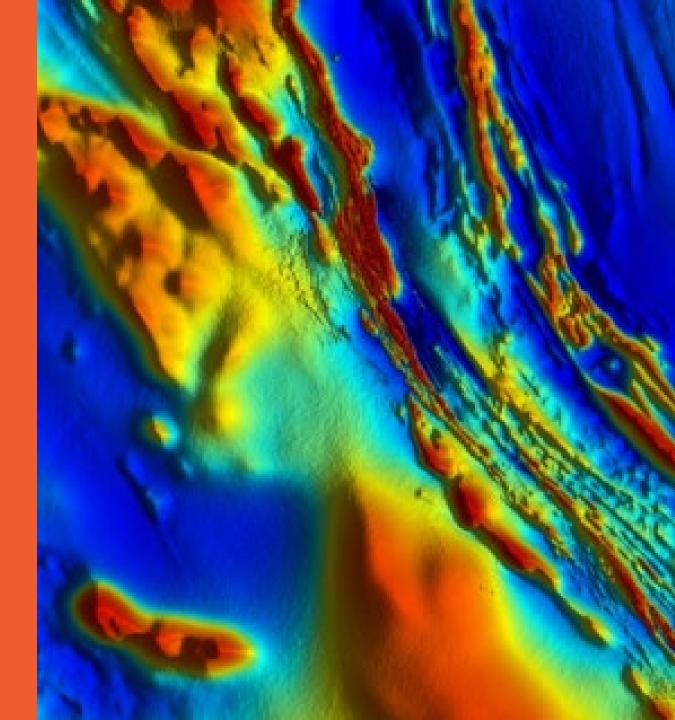
Critical minerals – prospectivity mapping using generative Al

Presented by Dietmar Müller

The University of Sydney, School of Geosciences



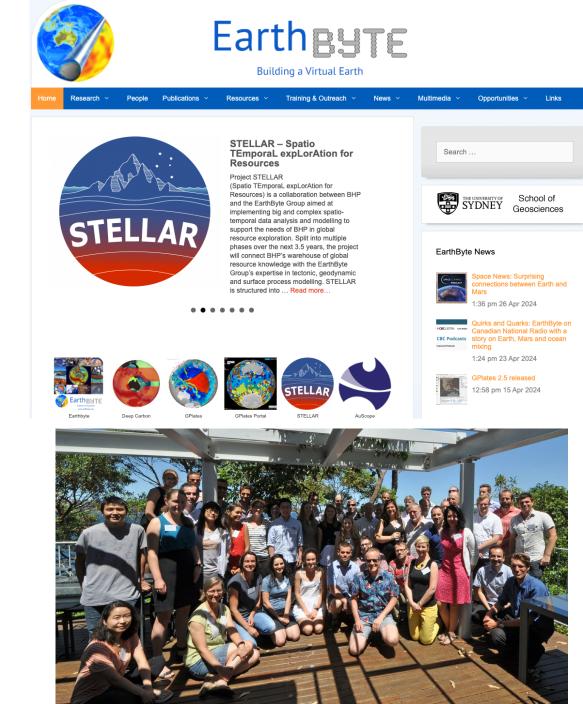


EarthByte Group

- Geology and Geophysics Research Group at the University of Sydney
- established in 2002
- www.earthbyte.org
- Philosophy: Build an e-research community through shared open software and digital data
- Current focus on critical mineral exploration, e.g. copper, nickel, cobalt, REEs

Vera Nolte-Wilson

Nathan Wake



Critical minerals/metals

Essential in a range of strategic sectors – renewable energy, modern technologies, …

Strategic investment at federal and state level

Critical Minerals Strategy 2023-2030 June 2023

ndustry.gov.au/CriticalMineralsStrategy

Australia's first **Critical Minerals Hub** in Central West NSW

Premise welcome the NSW Government's announcement and look forward to supporting projects in the Critical Minerals Hub

HOME LATEST NEWS ALL TOPICS - RESOURCES - EVENTS - CRITICAL MINERA

Funding, News

NSW Mining enjoys spending boom

Mining companies injected a record amount of \$23.6 billion into the NSW economy in FY23, +41% FINANCIAL REVIEW

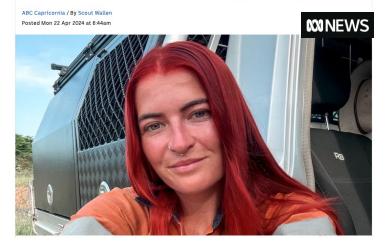
Sophie was going to be a singer, instead she's digging up rocks

Students like Sophie Allen are choosing degrees based on the contribution they can make to slowing global warming.

It was when she took geology as an elective subject that her future suddenly took shape. She would play a role in addressing climate change in precisely the field that has been shumed by many of her generation because of its association with fossil fuels.

Earth Systems Research Project GEOL3888: using machine learning to prospect for minerals in the Lachlan fold belt

Cost of living crisis is unearthing more women who want to work in the mining industry



Dietmar Müller • You Professor of Geophysics at University of Sydney 6mo

The last day of class today in GEOL3888, the Earth Systems Research Project unit in the School of Geosciences University of Sydney! We used machine learning to prospect for copper, gold and lead mineral deposits in th ...see more

Why machine learning and AI in exploration?

Q

SMALL CAPS

Hot Topics

T

AI and machine learning helping miners find new resources

By Colin Hay - June 1, 2023

ABOUT SECTIONS TOPICS V PROJECTS V NEWSLETTER SUBMIT TO EOS

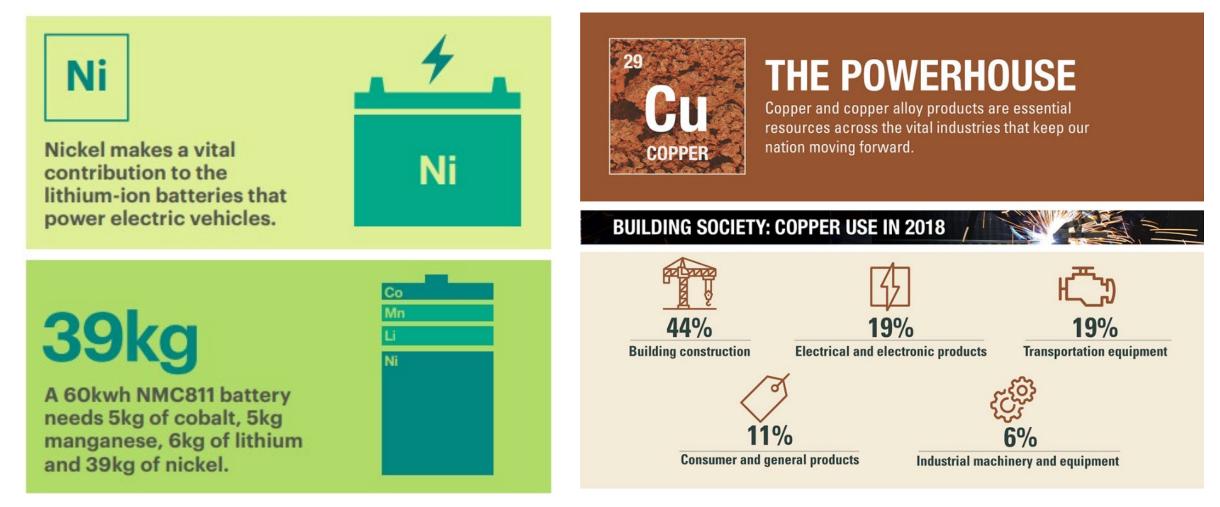
Machine Learning Could Revolutionize Mineral Exploration

Using a global data set of zircon trace elements, new research demonstrates the power of machine learning algorithms to accurately identify and locate porphyry copper deposits.

By Aaron Sidder 26 August 2022

AGU's Newest Journal – JGR: Machine Learning and Computation

Today's focus: Nickel, cobalt and copper

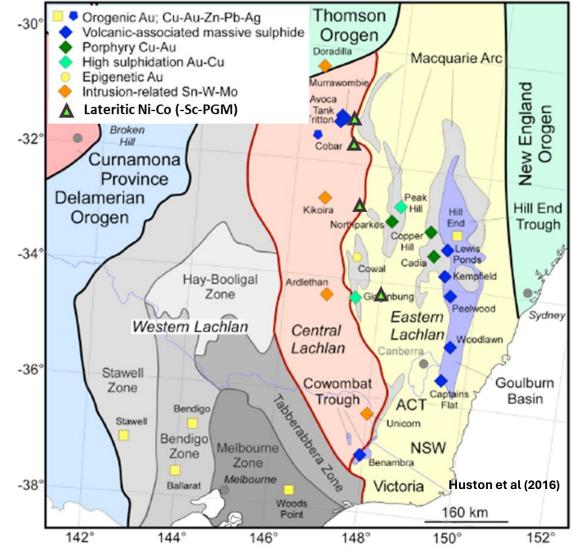


• Ni and Co – steel manufacture, specialty alloys, aviation, aerospace & chemical industries

Cu – power generation, transport, ...

Lachlan Orogen exploration potential

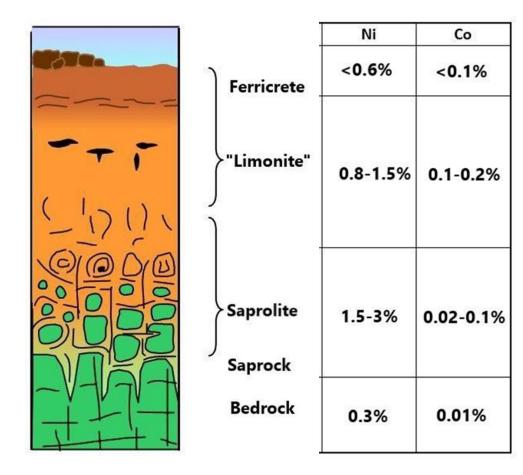
- Rich metallogenic endowment from discrete orogenic-magmatic events along active margin
- Lateritic Ni-Co deposits
- Mafic-ultramafic source rocks
 - Serpentinised ophiolites (Camb-Ord)
 - Mafic-ultramafic intrusions (Ord-Sil)
 - Supergene enrichment Ni-Co
 - Cenozoic deep lateritic weathering
- Diverse range of **Cu**-rich deposits
- NSW remains underexplored
- Multi-dimensional datasets can be analysed using machine-learning to advance exploration



Lachlan Orogen Metallogenic Diversity

Lateritic Ni-Co Minerals System

- Source: Geodynamic setting and associated magmas and fluids required to extract ore components (melts or fluids) from mantle and/or crustal sources
- **Transport**: Lithospheric structural architecture that provides pathways for fertile magmas and fluids, transferring ore components from source to trap
- **Trap/Deposition**: Lateritisation concentrates ore components in the host rocks and/or structures
- **Preservation**: Low relief and tectonic stability best to preserve the ore components



• Different parts of the system can be mapped via specific combinations of geological and geophysical features

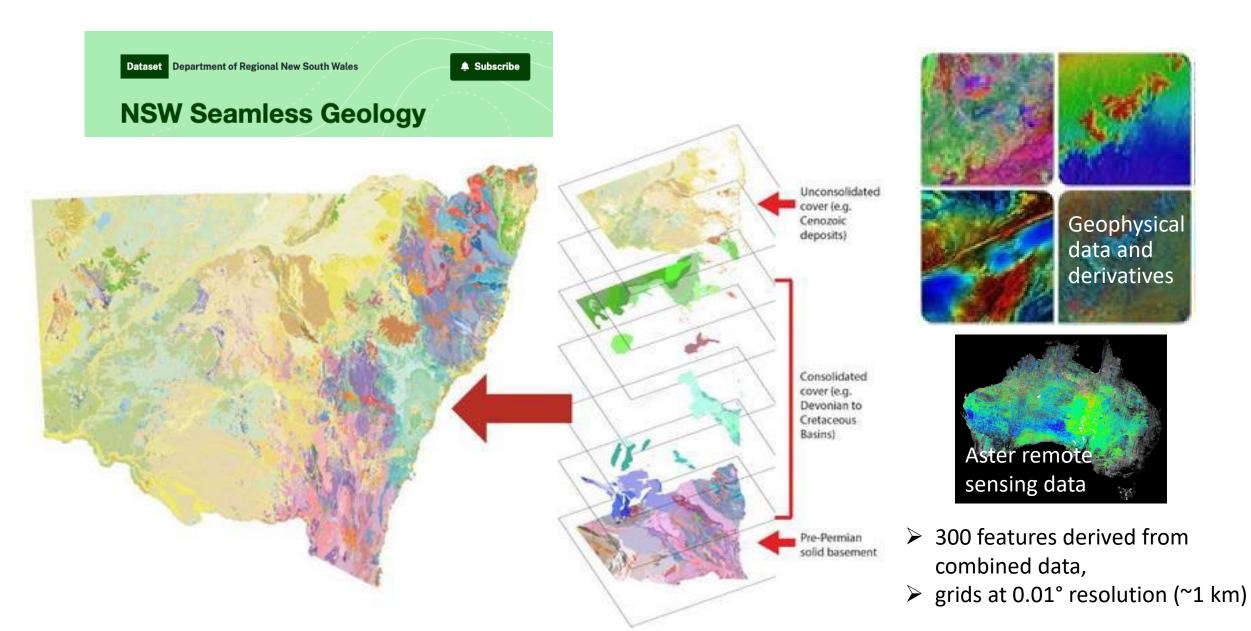
Landscapes of Ni-Co deposits

Thuddungra (Nico Young) lateritic Ni-Co (Jervois, 2018)

Syerston (Owendale) lateritic Ni-Co (CleanTeq, 2017)

Nyngan (West Lynn) lateritic Ni-Co (Alchemy, 2017)

Data: Known ore deposit sites, geology, geophysics



Data Layers and Features

20 Geological Layers

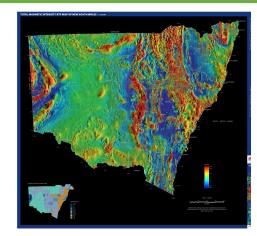
- Geological boundaries
- Metamorphic facies and isograds
- Faults
- Intrusions
- Rock units

72 Geophysical Layers

- Magnetic
- Gravity
- Radiometric
- Remote sensing

288 Features

34 Features



Data: a more detailed look

District	No. of	Major	Source	Data Type	Data Layers	
Thuddungra	Occurrences 8	Resources Yes	rocks Ophiolite	Geological	Rock units Faults Unconformities Metamorphic facies	
Syerston	5	Yes	Mafic-ultramafic Intrusion			
Homeville	2	Yes	Mafic-ultramafic Intrusion	Magnetics	RTP	
Nyngan	3	Yes	Mafic-ultramafic Intrusion		+ various filters	
Bungonia	16	No	Unknown	Gravity	Bouguer anomaly, derivatives	
Lateritic Ni-Co	o clusters listed f	rom south to noi	rth	Radiometrics	K, Th, U Ratios	

Remote sensing

Terrain

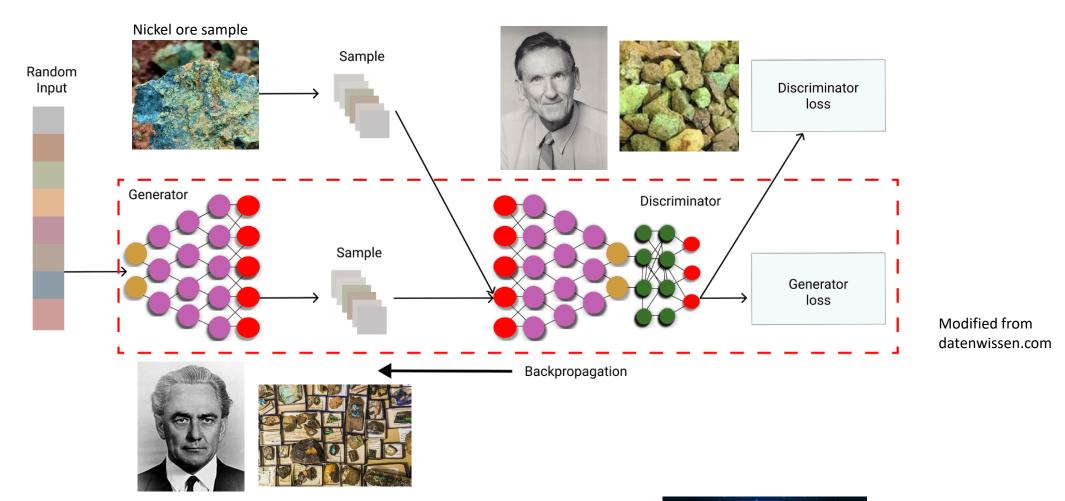
ASTER multispectral

DEM

- Bungonia exotic Co occurrences (source rock unknown)
- Examples of major resources:
 - Nico Young (Thuddungra) 53.6 Mt @ 0.66% Ni & 0.05% Co
 - Sunrise (Syerston) 160 Mt @ 0.56% Ni & 0.09% Co
 - Collerina (Homeville) 17.9 Mt @ 0.89% Ni & 0.06% Co

Machine-learning: training

Problem 1: Shortage of training data (< 30 with > 300 features)! GAN to the rescue.



A generative adversarial network (GAN) is a deep learning architecture.

ChatGPT

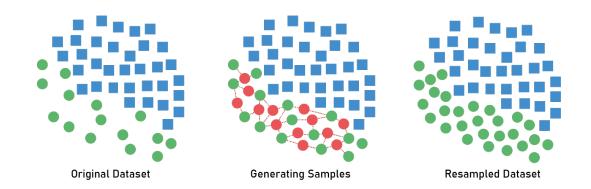
It trains two neural networks to compete against each other to generate new data from a given training dataset

Improved GAN: SMOTE-GAN

Synthetic Minority Oversampling Technique

- Interpolates between the "minority class" nearest neighbours to suggest new training samples.
- Our minority class are known ore deposits
- SMOTE-GAN plays a 'game' between generator and discriminator to find realistic ore deposit samples

Synthetic Minority Oversampling Technique



Other SMOTE-GAN applications:

Financial fraud detection

Healthcare product development

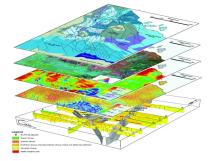
Insurance risk assessment

Marketing

Problem 2: We don't have a database of non-deposits (negative examples)

Positive examples (ore deposits)

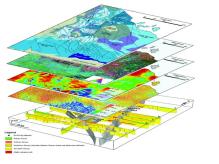
Particular features

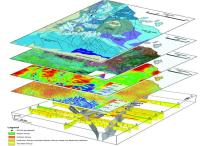


Unlabelled examples

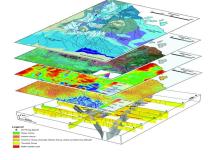
Wide range of features

Owendale



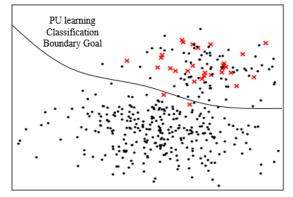


Blaikie and Kunzmann (2020)



Positive and Unlabelled Bagging

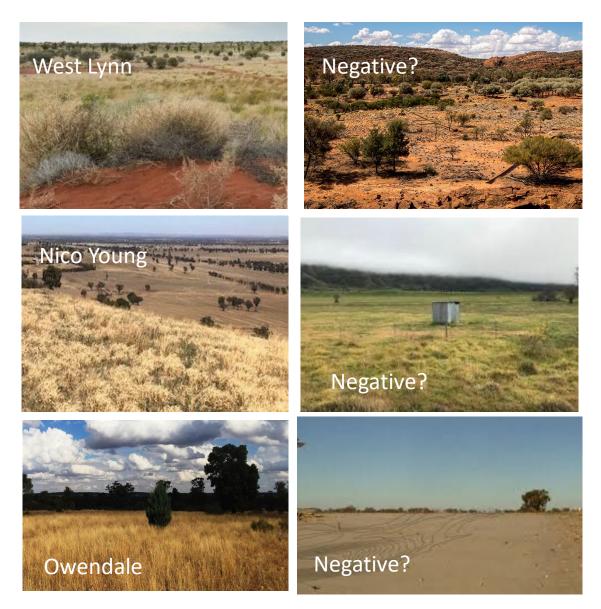
- Positive and unlabelled learning is a semisupervised binary classification approach that recovers labels from unknown samples by learning from positive samples and relabelling unknown samples
- The method is applied after SMOTE-GAN to separate unknown samples into positive and negative samples



Distinguish positive and negative examples from characteristics of a growing positive set

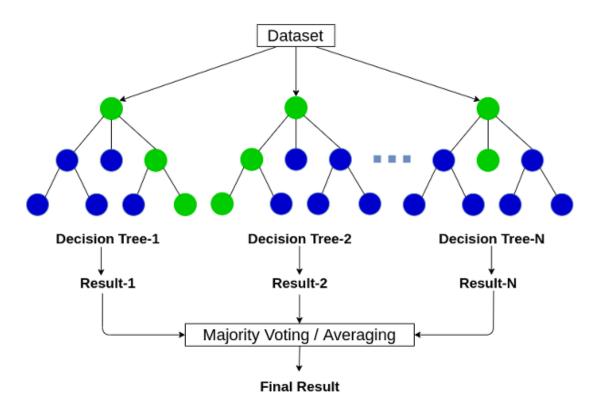
(b) Positive Unlabeled learning problem with only a percentage of positive labels known and all others unknown.

Jaskie (2019)



Random Forest for algorithm training

- Random Forest is a popular ensemble learning technique that uses multiple decision trees for better accuracy and robustness.
- It is effective in handling missing and noisy data typical in geological datasets
- Its capability to process large datasets with many features without needing dimensionality reduction is crucial, as it ensures no potentially important features are omitted, maintaining the model's accuracy.

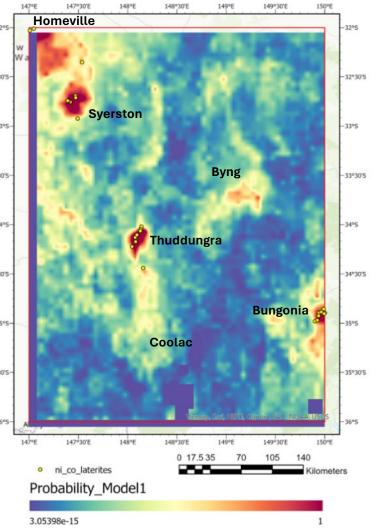


Model 1 Feature importance – all input data (>300 features)

Feature	Importance	Cumulative Sum	32°5
Correlation of AlOH group content	0.099	0.099	N
Mean of phase of TMI_RTP	0.084	0.183	32*30'5
Benambran subgreenschist facies	0.067	0.250	
Standard deviation of CSCBA gravity 2016	0.055	0.305	33°S
CSP clastic sediments	0.041	0.346	
LAO faulted boundary	0.039	0.385	33°30'5
CSP Null	0.038	0.423	34°S
Mean deviation of CSCBA gravity 2016	0.034	0.457	
Unconformities of metamorphic boundaries	0.028	0.486	34°30'5
Dissimilarity of ferric oxide content	0.026	0.512	
Mean of radiation dose rate	0.024	0.535	35°S
Mean of pseudo gravity of TMI_RTP	0.023	0.558	
X horizontal derivative of ellipsoid DEM	0.022	0.580	35°30'5
Correlation of half vertical derivative of TMI_RTP	0.022	0.602	36°5
Mean of FeOH group content	0.021	0.623	

All data layers

– Top 15 feature proxies for lateritic Ni-Co



Model 1 – Prospectivity map Lateritic Ni-Co mineralisation

Model 2 Feature importance – <10% of all features used

Feature	Importance	Cumulative Sum	32°5-	147°30'E Homeville	148°E	148°30'E 149°E	149°30'E	150°E
Correlation of AlOH group content	0.134	0.134	N		100	10.00	1.	
Benambran subgreenschist facies	0.127	0.260	32°30'5-	e se i	1.5		Sec.	-32*30'5
Mean of phase of TMI_RTP	0.115	0.375		Syerston				
CSP clastic sediment	0.080	0.456	33°5-					-33°S
Standard deviation of CSCBA gravity 2016	0.076	0.532		-	Byng	wind		
CSP Null	0.057	0.589	33°30'5-	EN.		Dyng	Bylig	-33°30'S
Unconformities of metamorphic boundaries	0.045	0.634	34°5-				-34°S	
LAO faulted boundary	0.039	0.674		Thuddungra	1			
Mean of radiation dose rate	0.030	0.704	34°30'5-		-1	1.50		-34*30'5
Mean deviation CSCBA gravity 2016	0.027	0.731		Solution 1		Bungonia		
Standard deviation of 1VD of CSCBA gravity 2016	0.022	0.754	35%-	8-19	100	Coolac		-35°S
Mean of pseudo gravity of TMI RTP	0.021	0.775	35°30'5-		-	COOLAC	1.20	-35*30'5
Mean of ferrous hydroxide (FeOH) group content	0.021	0.796		100	6.5		10.00	
Dissimilarity of silica index	0.021	0.817	3675 A				Samura Son , Newson D	-36*S
Dissimilarity of 1VD of CSCBA gravity 2019	0.020	0.837	1474	147°30'E	148°E	148°30′E 149°E 0 17.5 35 70	149°30'E	150°E

Data layers >0.01 Cut-off

– Top 15 feature proxies for lateritic Ni-Co

Model 2 – Prospectivity map Lateritic Ni-Co mineralisation

ni co laterites

1.30104e-16

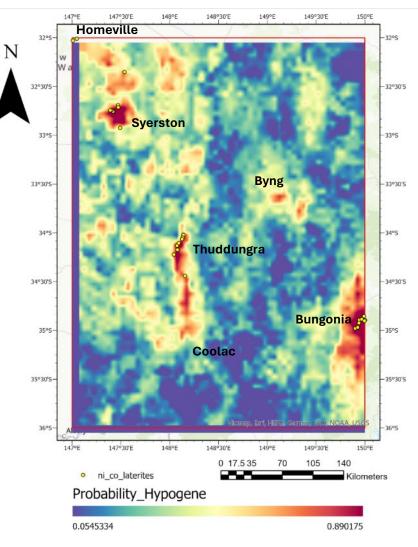
Probability_Model3_imp_01

Model 3 Hypogene (primary) feature selection

Feature

LAO_Serpentinite
LAO_Ultramafic igneous rocks
Mean of phase of TMI RTP
Benambran subgreenschist facies
LAO_unconformable boundaries
LAO_geological boundaries
Mean of CSCBA gravity 2016
Mean of isostatic residual gravity 2016
Unconformities of metamorphic boundaries
Faults of metamorphic boundaries
Unconformable boundaries of intrusion boundaries
Mean of pseudogravity of TMI_RTP
CSP geological boundaries
LAO_faulted boundaries
Correlation of AlOH group content
Correlation of opaque index
Benambran upper greenschist facies
Mean of MgOG group content

Data layers representing / proxies for source rocks



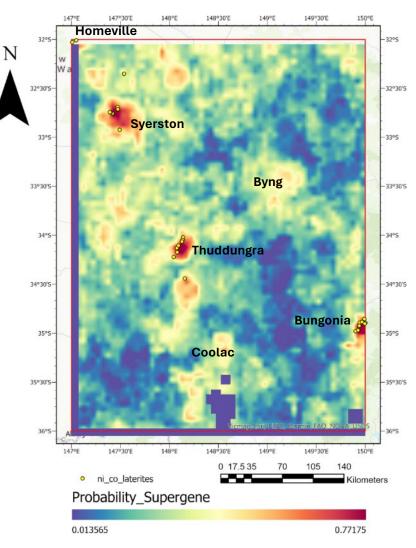
Model 3 – Prospectivity map Lateritic Ni-Co mineralisation

Model 4 Supergene (secondary) feature selection

Feature

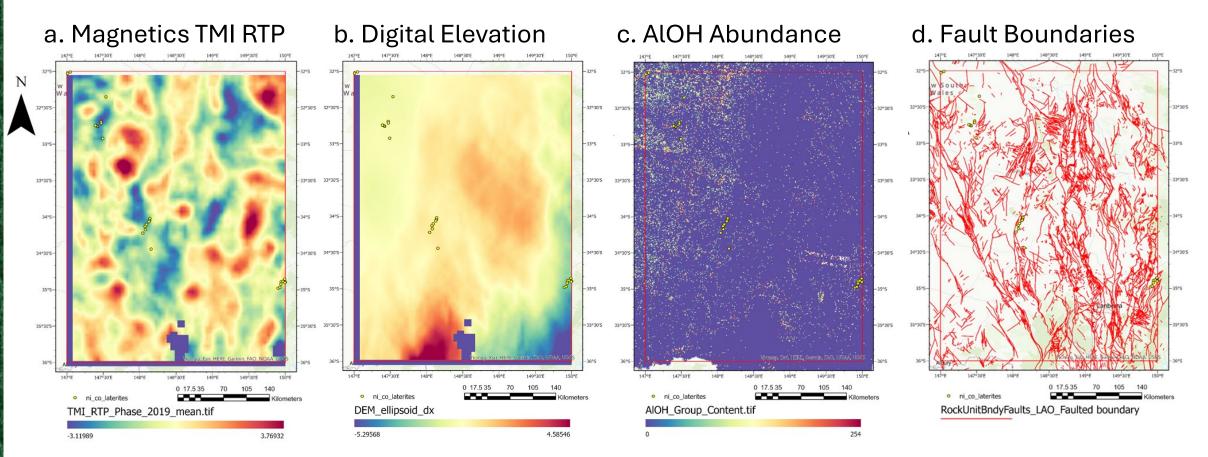
Correlation of 1VD TMI
X horizontal derivative of ellipsoid DEM
Correlation of AlOH group content
Correlation of half vertical derivative of TMI_RTP
Correlation of green vegetation content
Dissimilarity of ferric oxide content
CSP clastic sediment
Dissimilarity of uranium (U) concentration unfiltered
Standard deviation of ratio of Th to K
Dissimilarity of ratio of U to K
Mean of silica index
Correlation of ferric oxide composition
LAO_Serpentinite
LAO_Ultramafic igneous rock
Correlation of gypsum index
Mean of FeOH group,conten
Strandard deviation of radiation dose unfiltered
CSP geological boudaries
LAO_RockUnit_faulted boundaries

Data layers representing / proxies for weathering profiles



Model 4 – Prospectivity map Lateritic Ni-Co mineralisation

Top Features for successful training

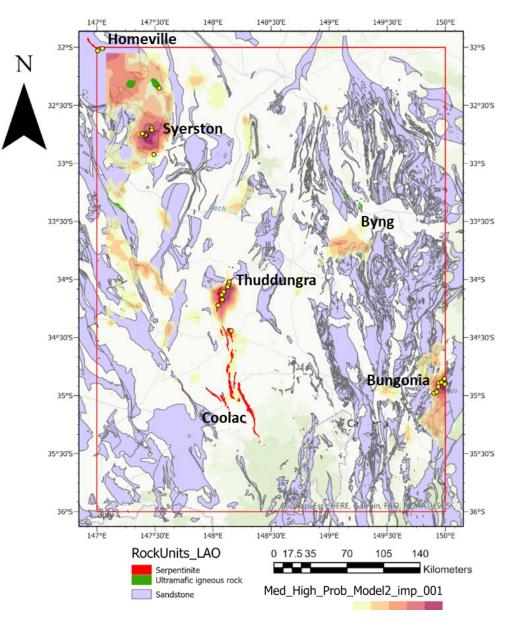


Examples of four high ranking features:

a) Mean TMI reduce-to-pole phase 2019; b) Horizontal derivative of DEM;

- c) ASTER multispectral AlOH group content; d) Lachlan Orogen_ Rock Unit fault boundaries.
- Training set mineral occurrences are plotted as circles.

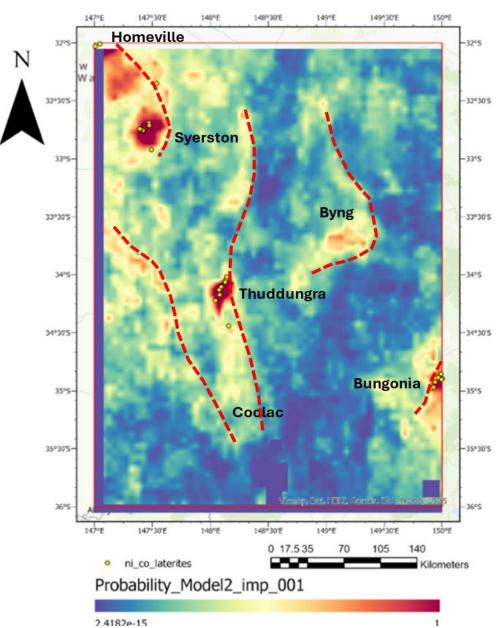
Targeting



- Key geological features map, highlighting:
 - Distribution of Ni-Co source rock units
 Ophiolites
 - Mafic-ultramafic intrusions
 - Distribution of other basement rocks
 Metasedimentary rock units
- Overlain by:
 - Lateritic Ni-Co occurrences (training set)
 - Model 2 Lateritic Ni-Co prospectivity map

 moderate to high probabilities
 (yellow-red)

Targeting



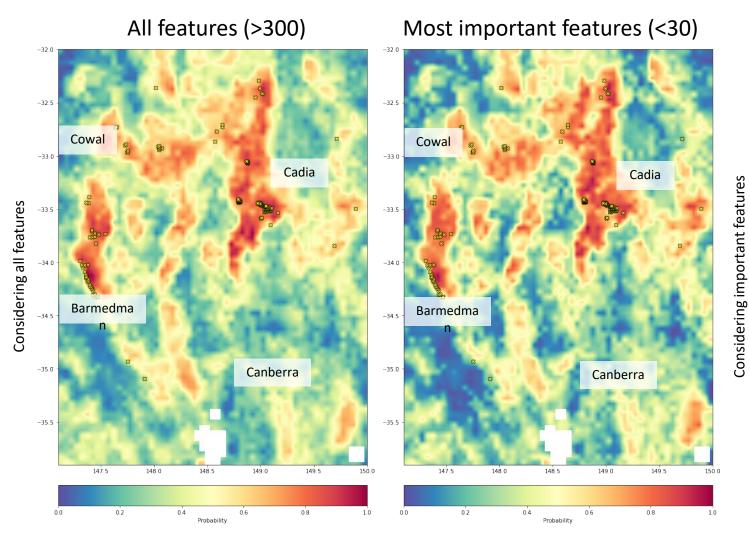
Potential new greenfield areas for future exploration:

- Coolac-Thuddungra serpentinite belts Two sub-parallel linear/curvilinear belts
 - each extending over +200-300 km
- Syerston-Homeville-Nyngan mafic-ultramafic intrusion field
 - lobate high-probability feature (~30 x 70 km)
- Byng Volcanics
 150 km long arcuate feature
- Bungonia region
 - Cobalt in manganiferous wads

(Cenozoic grits/sandstone - source unknown)

Method can easily be scaled to higher resolution in target regions

Preliminary prospectivity maps for porphyry Cu



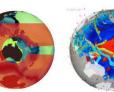
 Magnetic grids and intrusive boundaries are the most important data layers.

- Important features include:
 - Standard deviation and mean of the first vertical derivative of magnetic data
 - Dissimilarity of the total horizontal gradient of the pseudo gravity of magnetic data
 - Proximity to faulted intrusive and rock boundaries

Cu occurrences are weighted by tonnage and grade

Conclusions

- Machine learning has an enormous potential for critical mineral exploration in NSW
- From general to detailed exploration: Easy scaling to finer local resolution
- Robust when faced with noisy data
- Additional features can easily be included
- Several ARC and CRC avenues for industrygovernment-university collaboration



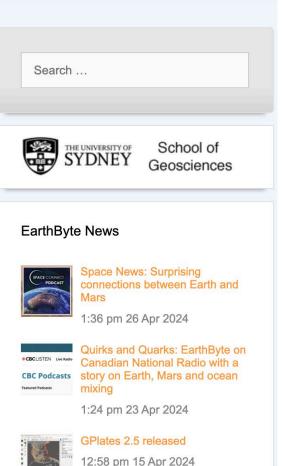
Deep Carbon

GPlates Portal

GPlates

STELLAR

AuScope



GPlates 2.5 software and data

GPlates sets

Links

NSW industry partners wanted!

ARC Linkage ARC Industry Fellowships CRC-P

Contact: dietmar.muller@sydney.edu.au

www.earthbyte.org