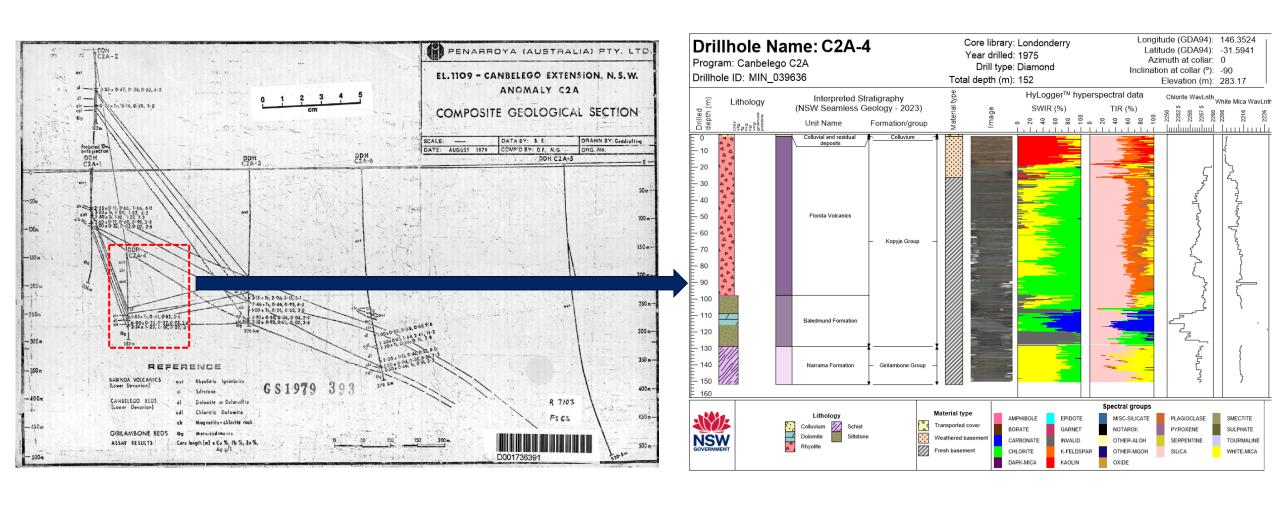
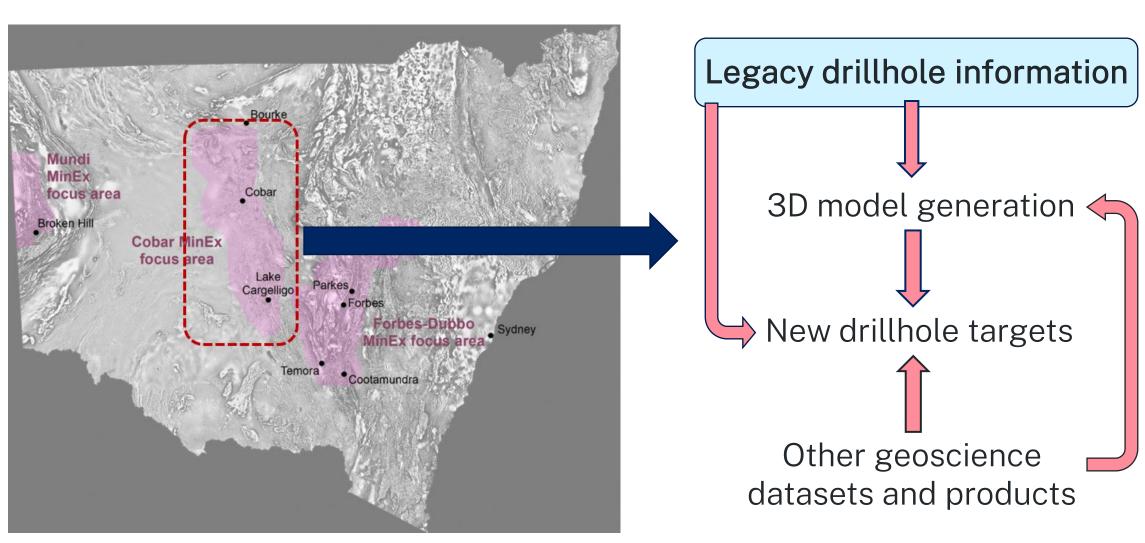


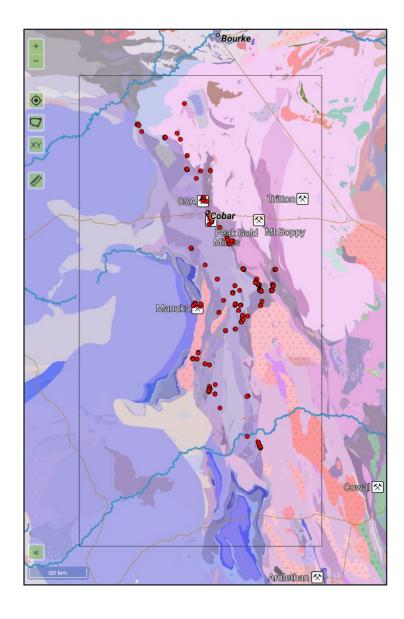
New ways to present old data


The Cobar drillhole and atlas compilation project

Dr Chris FolkesSenior Geoscientist, Projects & Acquisition


Depth	Depth	Mag	Sample			Miseralogy DES	CRIPT	ON	_	
From		Sus	No	Wthmg	Colour	Lithology *	Struct	Alteration/ Min. / Comments	Qtz	H ₂ C
0	2	lou		Stran	er bn	"clan SAPNOLITE	MA	The . wasterock road fill .		-
2	4	T	1	1	Gran/rabn	clar Fe.Ox		The wasterock road Lill.		Т
4	6	П	110		argy/rdbn		1	Marked some		Π
6	8		1		nd bn					Π
8	10)		•	- hem/wm -				
10	12	T	1	Media-	-	clay Q ion lin SST		An on vein a	~	
12	14		/	"	-					
14	16		840	S	4 ba	clay lim .	1			
16	18			^	7.	a sericirc lin		f.g sericitic sandstone		
18	20)	**	•	•				
20	22			2	ery br	clay "		miner lim		
22	24				er for bo	clay a fem .		voing, set has been matrix	/	
24	26		1841	3	rabn	aday ten "		med what f.g. sst		
26	28					a ser hem .				
28	30				•					
30	32			,	rd y ba	a ser lim "				
32	34			S	ergy ba	clay tem 4,				
34	36		842		y 62 ya	ser eim ?				
36	38				y ba	Q ser him SST		venia	_	
38	40				٦,	n •		**	>	
40	42	\perp			•					<u>_</u>
42	44	\perp		~	*	• •			n.	L_
44	46	\perp	1847		97 7 6"					_
46	48	\perp	1	\perp	77 7	" hem "				
48	50	\perp			~	` *				
50	52	-1-1	1		**					
52	54	4	$\left(- \right)$			alin sirken "				
54	56	\perp	7844		gy y ba	a lim ser .				
56	58	\perp		\dashv		a hem "				
58	60	- -		\rightarrow	99 76-	* *				
60	62	44	}		"	· han ·				
62	64	4	()	1	gy 7065	N 64 6				
64	66		845			<u> </u>				
66	68	44	1	Veak	9).~	a ser tem +				
68	70	+				<u>*</u> _				
70	72	44	}	-	••	" lim"				
72	74	44	[97) 	@ 3er =				
74	76	44	846	-		*				
76	78	- -	\longrightarrow		rdy br	n tembin -				
78	80	\bot		•	97 gr	as bean u		strongly series ised.		

Mineral Exploration (MinEx) CRC

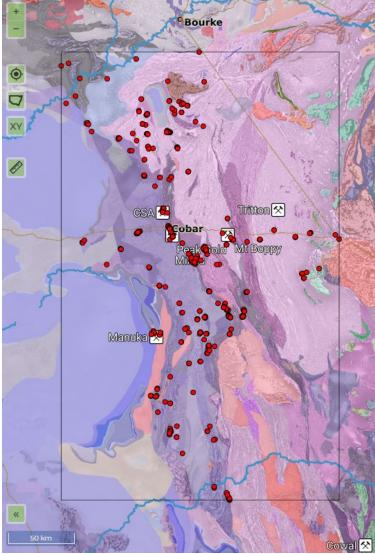


MinEx CRC National drilling initiative (NDI) focus areas in NSW

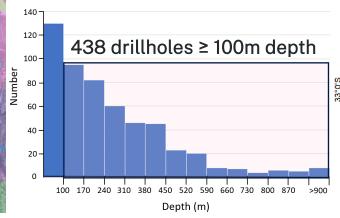
Starting dataset – 2020

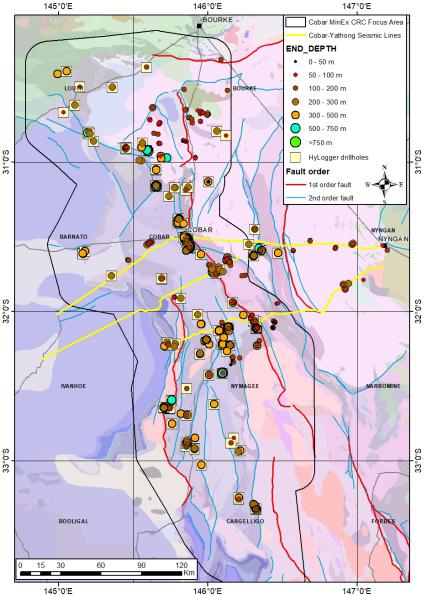
- October 2020 release of downhole data compiled by GSNSW for the Cobar airborne electromagnetic (AEM) survey area:
 - Collar and downhole survey information
 - Lithology information includes cover and weathering data, interpreted stratigraphy (from NSW Seamless Geology)
 - Downhole spectral data (where available) from HyLogger™
- Involved various QA-QC / data validation
- Helped to interpret the AEM dataset and constrain associated 3D datasets
- Downhole data for 351 open file drillholes available in MinView ('Cobar mineral drillholes' layer)

Name	Туре	Size
Cobar_COLLARS_07Aug20.csv	Microsoft Excel C	43 KB
Cobar_dhLITH_19Aug20.csv	Microsoft Excel C	2,316 KB
Cobar_dhSURV_07Aug20.csv	Microsoft Excel C	141 KB
Cobar_dhSWIR_07Aug20.csv	Microsoft Excel C	3,627 KB
Cobar_dhTIR_07Aug20.csv	Microsoft Excel C	5,188 KB
Cobar_dhVNIR_07Aug20.csv	Microsoft Excel C	1,511 KB
schema.ini	Configuration sett	1 KB


Rationale for updating the 2020 dataset

- Expanded focus area original smaller MinEx
 Cobar NDI areas now merged and expanded
- Also-extended Cobar-Yathong seismic survey
- New (open file) drillholes new data has become available since 2020
- Recent new HyLoggerTM information more legacy drillholes now have spectral information
- Missing or incorrect depth intervals for lithologies and weathering


- More information needed for new Cobar 3D model and datasets – for example, fully populated elevation/height and downhole survey data
- No existing written report no detailed methods provided for the 2020 dataset



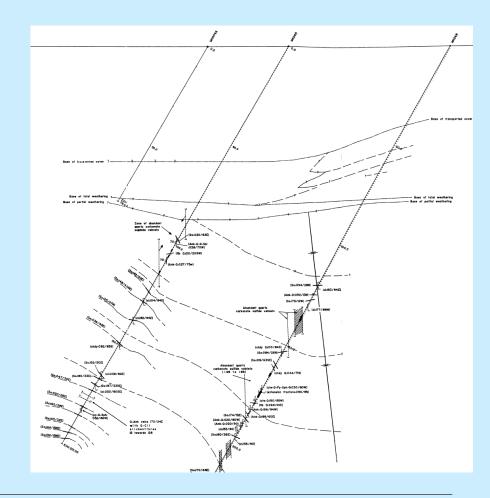
539 drillholes (188 added since 2020 dataset)

Drillholes prioritised: >100 m depth and with HyLoggerTM data

Collar data

42 separate attributes for each drillhole including:

- Location information (i.e. latitude, longitude)
- Drillhole identifiers
- Supplementary information year drilled, depth, drilling type, company report(s)
- Location of drillhole material and tests core library, HyLoggerTM
- Most information from GSNSW databases
- Height/elevation data validated and fully populated using 5 m digital elevation model (DEM)


Z	В	С	D	E	Н	I	K	L	P	S	U
1	DRILL_ID	HOLE_NAME	PROSPECT	RIN	END_DEPTH	PROGRAM	TITLE_TYPE	TITLE_NO	DRILL_TYPE	YEAR_DRILLED	CORELIB
2	MIN_048999	137751	Malonys Tank	R00001931	30	Malonys Tank - Iris Vale (Placer Exploration)	EL	3510	Rotary air blast hole	1991	N/A
3	MIN_049032	137784	Malonys Tank	R00001931	30	Malonys Tank - Iris Vale (Placer Exploration)	EL	3510	Rotary air blast hole	1991	N/A
4	MIN_049057	137812	Malonys Tank	R00001931	30	Malonys Tank - Iris Vale (Placer Exploration)	EL	3510	Rotary air blast hole	1991	N/A
5	MIN_049058	137813	Malonys Tank	R00001931	30	Malonys Tank - Iris Vale (Placer Exploration)	EL	3510	Rotary air blast hole	1991	N/A
6	MIN_049059	137814	Malonys Tank	R00001931	30	Malonys Tank - Iris Vale (Placer Exploration)	EL	3510	Rotary air blast hole	1991	N/A
7	MIN_039891	37S-1D	South Shuttleton	R00022272	331.4	South Shuttleton	EL	152	Diamond	1973	Londonderry
8	MIN_039892	37S-1DWEDGE	South Shuttleton	R00022272	420.23	South Shuttleton	EL	710	Diamond	1975	Londonderry
9	MIN_039893	37S-2D	South Shuttleton	R00022272	337.1	South Shuttleton	EL	152	Diamond	1973	Londonderry
10	MIN_039894	37S-3D	South Shuttleton	R00022272	461	South Shuttleton	EL	152	Diamond	1974	Londonderry
11	MIN_039896	37S-4D	South Shuttleton	R00022272	361	South Shuttleton	EL	152	Diamond	1974	Londonderry
12	MIN_039897	37S-5D	South Shuttleton	R00022272	666.3	South Shuttleton	EL	152	Diamond	1974	Londonderry
13	MIN_005386	77-TD1	Tara Mine	R00013244	242.3	Tara Mine	EL	817	Diamond	1977	Londonderry
14	MIN_005314	78ODD1	Osterley Downs	R00013244	224.29	Osterley Downs	EL	776	Diamond	1978	Londonderry
15	MIN_005387	78-TD2	Tara Mine	R00013244	200.18	Tara Mine	EL	817	Diamond	1978	Londonderry
16	MIN_006462	78-WD-D1	Mount Dijoe	R00016136	298.4	Mount Dijou	EL	1138	Precollared Diamond	1978	Londonderry
17	MIN_023760	96DD001	Darling Downs Anomaly	R00002888	511.8	Darling Downs Anomaly - Cobar	EL	5053	Precollared Diamond	1996	N/A
18	MIN_012426	APH1	Abminco	R00001797	150	Abminco	EL	3673	Open hole percussion	1991	N/A
19	MIN_006326	BDH4	Beanbah	R00016206	31	Beanbah	EL	1087	Diamond	1981	Londonderry
20	MIN_010048	BG1	Balgammon Grid	R00014674	150	Balgammon Grid	EL	2005	Open hole percussion	1984	N/A
		BH5	Mag Anomaly BH5 - Lake	RE0003054	351.55	Mag Anomaly BH5 - Lakemere	EL	7532	Diamond	2011	Londonderry
22	MIN_060616	BH6	Mag Anomaly BH6 - Lake	RE0003054	411.6	Mag Anomaly BH6 - Lakemere	EL	7532	Precollared Diamond	2011	Londonderry
23	MIN_040883	BMD001	Blue Mountain	R00009001	672.6	Blue Mountain - Gilgunnia	EL	3527	Diamond	1991	Londonderry
24	MIN 040884	BMD002	Blue Mountain	R00009001	703	Blue Mountain - Gilgunnia	EL	3527	Diamond	1992	Londonderry
25	MIN 040850	BMD1	Blue Mountain	R00000602	208.5	Blue Mountain - Wonawinta	EL	3255	Diamond	1991	Londonderry
26	MIN_040854	BMD5	Blue Mountain	R00003632	212.8	Blue Mountain - Wonawinta	EL	3255	RC Percussion	1992	Londonderry
27	MIN_006330	BPH4	Beanbah	R00016205	90	Beanbah	EL	1087	Open hole percussion	1981	N/A
28	MIN_163790	BPRC001	Browns - Muriel Tank Go	RE0007123	80	Browns - Muriel Tank Goldfield	EL	6739	RC Percussion	2015	N/A
	MIN_163791	BPRC002	Browns - Muriel Tank Go	RE0007123	80	Browns - Muriel Tank Goldfield	EL	6739	RC Percussion	2015	N/A
	MIN_163792		Browns - Muriel Tank Go	RE0007123	100	Browns - Muriel Tank Goldfield	EL	6739	RC Percussion	2015	N/A
	MIN 163793		Browns - Muriel Tank Go	RE0007123	80	Browns - Muriel Tank Goldfield	EL	6739	RC Percussion	2015	N/A
32	MIN_163794	BPRC005	Browns - Muriel Tank Go	RE0007123	80	Browns - Muriel Tank Goldfield	EL	6739	RC Percussion	2015	N/A
	MIN_163795		Browns - Muriel Tank Go	RE0007123	80	Browns - Muriel Tank Goldfield	EL	6739	RC Percussion	2015	N/A
	MIN 163796		Browns - Muriel Tank Go	RE0007123	120	Browns - Muriel Tank Goldfield	EL	6739	RC Percussion	2015	N/A
	MIN 163797		Browns - Muriel Tank Go	RE0007123	80	Browns - Muriel Tank Goldfield	EL	6739	RC Percussion	2015	
	_	BR008	Browns Reef	R00041951	459.3	Browns Reef - Lake Cargelligo	EL	6321	Diamond	2007	Londonderry
	_	BR009	Browns Reef	R00041951		Browns Reef - Lake Cargelligo	EL	6321	Diamond		Londonderry
	_	BR011	Browns Reef	R00041951		Browns Reef - Lake Cargelligo	EL	6321	Precollared Diamond		Londonderry
_	_	BR014	Browns Reef	R00041951		Browns Reef - Lake Cargelligo	EL		Precollared Diamond		Londonderry
	_	BR016	Browns Reef	R00041951		Browns Reef - Lake Cargelligo	EL		Precollared Diamond		Londonderry
	_	BR017	Browns Reef	R00041951		Browns Reef - Lake Cargelligo	EL		Precollared Diamond		Londonderry
	MIN 004955		Browns Reef	R00030988		Browns Reef - Lake Cargelligo	EL		Diamond		Londonderry
	_	BR019	Browns Reef	R00030988		Browns Reef - Lake Cargelligo	EL		Diamond		Londonderry
	MIN 004935		Browns Reef	R00007318		Browns Reef - Lake Cargelligo	EL		Diamond		Londonderry

Downhole survey data

- Full downhole survey information for all drillholes in the dataset
- Required to plot drillholes in 3D space (dip and azimuth data at different depths)
- Most information from GSNSW databases (augmented with recent Annual Report Release Policy data)
- Some database gaps filled from data in company reports

4	В	C	D	E	1	J	K
1	DRILL_ID	HOLE_NAME	PROSPECT	RIN	DEPTH	DIP	AZIMUTH_MAG
2	MIN_040883	BMD001	Blue Mountain	R00009001	0	-60	290
3	MIN_040883	BMD001	Blue Mountain	R00009001	50	-60	292.5
4	MIN_040883	BMD001	Blue Mountain	R00009001	92	-59.5	293
5	MIN_040883	BMD001	Blue Mountain	R00009001	140	-59.5	292
6	MIN_040883	BMD001	Blue Mountain	R00009001	193	-60	294
7	MIN_040883	BMD001	Blue Mountain	R00009001	250	-58.5	295
8	MIN_040883	BMD001	Blue Mountain	R00009001	300	-58.5	294
9	MIN_040883	BMD001	Blue Mountain	R00009001	377	-54	296
10	MIN_040883	BMD001	Blue Mountain	R00009001	431	-50.5	296
11	MIN_040883	BMD001	Blue Mountain	R00009001	494	-46	298
12	MIN_040883	BMD001	Blue Mountain	R00009001	503	-44.8	299
13	MIN_040883	BMD001	Blue Mountain	R00009001	517.7	-44	299
14	MIN_040883	BMD001	Blue Mountain	R00009001	533.9	-42.5	299.5
15	MIN_040883	BMD001	Blue Mountain	R00009001	572.5	-40	301
16	MIN_040883	BMD001	Blue Mountain	R00009001	617.2	-35	301
17	MIN_040883	BMD001	Blue Mountain	R00009001	644.7	-33	303
18	MIN_040883	BMD001	Blue Mountain	R00009001	657	-33	302
19	MIN_040883	BMD001	Blue Mountain	R00009001	672.6	-32	301.5
20	MIN_040884	BMD002	Blue Mountain	R00009001	0	-60	290
21	MIN_040884	BMD002	Blue Mountain	R00009001	50.5	-59	290.5
22	MIN_040884	BMD002	Blue Mountain	R00009001	100.5	-55.5	291
23	MIN_040884	BMD002	Blue Mountain	R00009001	152.4	-50.5	293
24	MIN_040884	BMD002	Blue Mountain	R00009001	158.5	-50.5	293
25	MIN_040884	BMD002	Blue Mountain	R00009001	200.5	-50	293.5
26	MIN_040884	BMD002	Blue Mountain	R00009001	250.7	-49.5	294
27	MIN_040884	BMD002	Blue Mountain	R00009001	314	-49	294.5
28	MIN_040884	BMD002	Blue Mountain	R00009001	350	-48.7	294.5
29	MIN_040884	BMD002	Blue Mountain	R00009001	404	-48.3	294
30	MIN_040884	BMD002	Blue Mountain	R00009001	449	-41.7	294
31	MIN_040884	BMD002	Blue Mountain	R00009001	500	-39.3	294
32	MIN_040884	BMD002	Blue Mountain	R00009001	551	-35	294
33	MIN_040884	BMD002	Blue Mountain	R00009001	602	-31.7	293
34	MIN_040884	BMD002	Blue Mountain	R00009001	650	-29.5	292.5
35	MIN_040850	BMD1	Blue Mountain	R00000602	0	-60	278
36	MIN_040850	BMD1	Blue Mountain	R00000602	31.5	-60	280
37	MIN_040850	BMD1	Blue Mountain	R00000602	69	-60	280
38	MIN_040850	BMD1	Blue Mountain	R00000602	109	-60	279.5
39	MIN_040850	BMD1	Blue Mountain	R00000602	140	-60	276
40	MIN_040850	BMD1	Blue Mountain	R00000602	166	-60	278.5
41	MIN_040850	BMD1	Blue Mountain	R00000602	198	-61	277.5
42	MIN_040854	BMD5	Blue Mountain	R00003632	0	-50	96
43	MIN_040854	BMD5	Blue Mountain	R00003632	25	-50	100
44	MIN_040854	BMD5	Blue Mountain	R00003632	50	-49.5	100
45	MIN_040854	BMD5	Blue Mountain	R00003632	99	-45	98
46	MIN_040854	BMD5	Blue Mountain	R00003632	135	-45	100
47	MIN_040854	BMD5	Blue Mountain	R00003632	170	-45	100
48	MIN_040854	BMD5	Blue Mountain	R00003632	212	-45	100

Spectral data

Downhole HyLoggerTM hyperspectral data collated:

- 177 (out of 539) drillholes
- Data exported from The Spectral Geologist (TSGTM)
- Data files split into:
 - SWIR (short-wave infrared)
 - TIR (thermal infrared)
 - VNIR (visible-to-near infrared)
- Original spectral data and scalars can be obtained from the full NVCL datasets

4	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q
1 DRILL	_ID	Drillhole Name	From_Depth (m)	To_Depth (m)	MISC-SILICATE	SILICA	K-FELDSPAR	PLAGIOCLASE	GARNET	PYROXENE	OLIVINE	ZEOLITE	KAOLIN	WHITE-MICA	SMECTITE	OTHER-AL	CHLORITE
56 MIN_	039893	37S-2D	67	68	0	87.50436	0	0	0	C	0	0	0	12.495639	0	0)
57 MIN_	039893	37S-2D	68	69	0	60.4387	0	0	0	C	0	0	0	26.369057	0	0)
58 MIN_	039893	37S-2D	69	70	0	62.44093	0	0	0	C	0	0	0	37.559074	0	0) (
59 MIN_	039893	37S-2D	70	71	0	62.02694	0	0	0	C	0	0	0	37.973057	0	0) (
60 MIN_	039893	37S-2D	71	72	0	48.7572	10.415884	8.704369	0	C	0	0	0	25.914402	0	0) (
61 MIN_	039893	37S-2D	72	73	0	36.62614	0	8.812331	0	C	0	0	0	47.563686	0	0	6.99784
62 MIN_	039893	37S-2D	73	74	0	12.37317	0	20.476772	0	C	0	0	0	59.223991	0	0	7.92606
63 MIN_	039893	37S-2D	74	75	0	30.70376	0	8.702201	0	C	0	0	0	60.594044	0	0) (
64 MIN_	039893	37S-2D	75	76	0	28.76663	0	18.358471	0	C	0	0	0	52.874897	0	0) (
65 MIN_	039893	37S-2D	76	77	0	33.79572	7.859254	14.317423	0	C	0	0	0	44.027603	0	0) (
66 MIN	039893	37S-2D	77	78	0	7.322004	0	30.536383	0	C	0	0	0	62.141621	0	0) (
67 MIN	039893	37S-2D	78	79	0	21.21494	0	13.906683	0	C	0	0	0	52.700695	0	0	12.17768
68 MIN	039893	37S-2D	79	80	0	20.84127	0	17.37509	0	C	0	0	0	55.010464	0	0	6.77317
69 MIN	039893	37S-2D	80	81	0	18.06347	0	17.480106	0	C	0	0	0	53.611652	0	0	10.84477
70 MIN	039893	37S-2D	81	82	0	13.23077	0	13.059134	0	C	0	0	0	65.038811	0	0	8.67128
71 MIN	039893	37S-2D	82	83	0	6.495576	0	21.13048	0	C	0	0	0	62.028141	0	0	10.345
72 MIN	039893	37S-2D	83	84	0	13.48826	0	23.822206	0	C	0	0	0	53.077251	0	0	9.61227
73 MIN	039893	37S-2D	84	85	0	22.91831	0	12.224978	0	C	0			59.382919	0	0	5.47379
74 MIN			85	86	0	56.99518	0	0	0	C	0	0	0	36.218754	0	0) (
75 MIN	039893	37S-2D	86	87	0	56.97242	0	0	0	C	0	0	0	34.150417	0	0)
76 MIN	039893	37S-2D	87	88	0	27.88803	0	15.267098	0	C	0	0	0	56.844872	0	0) (
77 MIN			88	89	0	12.49376	0	23.273211	0	C	0	0	0	54.472488	0	0	9.76053
78 MIN			89	90	0	9.439347	0	27.263018	0	C	0	0	0	63.29763	0	0) (
79 MIN			90	91	0	10.68315	0	23.709131	0	C	0	0	0	58.0751	0	0	7.53261
80 MIN			91	92	0	21.00944	0	10.412576	0	C	0	0	0	51.549213	0	0	17.02876
81 MIN	039893	37S-2D	92	93	0	17.49245	0	0	0	C	0	0	0	30.301195	0	0	52.2063
82 MIN	039893	37S-2D	93	94	0	18.32328	0	9.494982	0	C	0	0	0	63.368237	0	0	8.81349
83 MIN	039893	37S-2D	94	95	0	85.94135	0	0	0	C	0	0	0	14.058653	0	0)
84 MIN			95	96	0	90.07369	0	0	0	C	0	0	0	9.926304	0	0) (
85 MIN			96	97	0	87.45169	0	0	0	C	0	0	0	12.548308	0	0) (
86 MIN			97	98	0	79.14284	0	0	0	C	0	0	0	20.857164	0	0) (
87 MIN			98	99	0	83.48655	0	0	0	C	0	0	0	16.513454	0	0) (
88 MIN			99	100	0	72.22862	0	0	0	C	0	0	0	21.395355	0	0	6.37602
89 MIN			100	101	0	84.18763	0	0	0	C	0	0	0	15.812367	0	0) (
90 MIN	-		101	102		100	0	0	0		0	0	0		0	0) (
91 MIN	-		102			82.25877	0	0	0	0	0	0	0	7.797411	0	0	9.94381
92 MIN			103		0	100	0	0	0	0	0				0		
93 MIN			104		_	87.26126	0	0	0				_	_	0		
94 MIN			105			90.10702	0	0	0		0				0		
95 MIN			106			79.70861	0	0	0						0		
		37S-2D	107			90.99911	9.000889	0	0		_	_	_		0		

Lithology (and stratigraphy) data

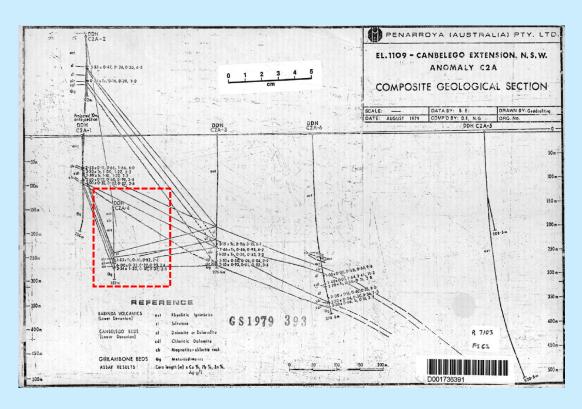
18 separate attributes for each drillhole including downhole interval data:

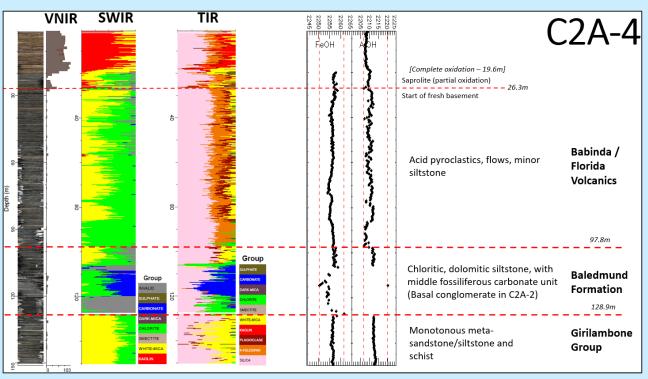
- Lithology contained in original company reporting (drill logs)
- Lithology mapped to GSNSW lithology library
- Transported cover, weathered basement, fresh basement
- Interpreted stratigraphy using the latest NSW Seamless Geology dataset (unit name and code, group, supergroup)

▲ B	С	D	E	F	G	Н	J	K	L	М
DRILL_ID	HOLE_NAME	FROM	TO	LITH1	GSNSW_LITH1	WEATHERING	UNIT_NAME	NSW_CODE	GROUP	SUPERGROUP
MIN_048999	137751	0		6 Brown clay	Clay	Transported cover	Colluvial and residual deposits	Q_cr	Colluvium	Cenozoic Sedimentary Province
MIN_048999	137751	6		8 Sand-quartz	Sand	Transported cover	Colluvial and residual deposits	Q_cr	Colluvium	Cenozoic Sedimentary Province
MIN_048999	137751	8		30 Weathered yellow fine-Sandstone	Sandstone	Weathered basement	Amphitheatre Group, lower	Daml	Amphitheatre Group	Cobar Supergroup
MIN_049032	137784	0		2 Soil/sand	Soil	Transported cover	Residual deposits - soil	Q_rs	Residual deposits	Cenozoic Sedimentary Province
MIN_049032	137784	2		8 White claystone	Claystone	Weathered basement	Burthong Formation	Dmmb	Mouramba Group	Cobar Supergroup
MIN_049033	137784	8		16 Brown/yellow claystone	Claystone	Weathered basement	Burthong Formation	Dmmb	Mouramba Group	Cobar Supergroup
MIN_049034	137784	16		18 Yellow soft claystone	Claystone	Weathered basement	Burthong Formation	Dmmb	Mouramba Group	Cobar Supergroup
MIN_049035	137784	18		28 White-grey claystone	Claystone	Weathered basement	Burthong Formation	Dmmb	Mouramba Group	Cobar Supergroup
0 MIN_049036	137784	28		30 Yellow claystone	Claystone	Weathered basement	Burthong Formation	Dmmb	Mouramba Group	Cobar Supergroup
1 MIN_049057	137812	0		4 Clay soil	Soil	Transported cover	Residual deposits - soil	Q_rs	Residual deposits	Cenozoic Sedimentary Province
2 MIN 049057	137812	4		6 Orange sand	Sand	Transported cover	Colluvial and residual deposits	Q cr	Colluvium	Cenozoic Sedimentary Province
3 MIN 049057	137812	6		8 White clay	Clay	Transported cover	Colluvial and residual deposits	Q cr	Colluvium	Cenozoic Sedimentary Province
4 MIN 049057	137812	8		10 River sand	Sand	Transported cover	Colluvial and residual deposits	Q cr	Colluvium	Cenozoic Sedimentary Province
5 MIN 049057	137812	10		24 White brown yellow fine Sandstone	Sandstone	Weathered basement	Amphitheatre Group, lower	Daml	Amphitheatre Group	Cobar Supergroup
6 MIN 049057	137812	24		30 Yellow claystone	Sandstone	Weathered basement	Amphitheatre Group, lower	Daml	Amphitheatre Group	Cobar Supergroup
7 MIN 049058	137813	0		8 Clay	Clay	Transported cover	Colluvial and residual deposits	Q cr	Colluvium	Cenozoic Sedimentary Province
8 MIN 049058	137813	8		10 Orange sand	Sand	Transported cover	Colluvial and residual deposits	Q cr	Colluvium	Cenozoic Sedimentary Province
9 MIN 049058	137813	10		14 River sand	Sand	Transported cover	Colluvial and residual deposits	Q cr	Colluvium	Cenozoic Sedimentary Province
0 MIN 049058	137813	14		24 White-yellow	Claystone	Weathered basement	Amphitheatre Group, lower	Daml	Amphitheatre Group	Cobar Supergroup
1 MIN 049058	137813	24		30 Yellow claystone	Claystone	Weathered basement	Amphitheatre Group, lower	Daml	Amphitheatre Group	Cobar Supergroup
2 MIN 049059	137814	0			Soil	Transported cover	Residual deposits - soil	Q rs	Residual deposits	Cenozoic Sedimentary Province
3 MIN 049059	137814	6		28 White yellow claystone	Claystone	Weathered basement	Amphitheatre Group, lower	Daml	Amphitheatre Group	Cobar Supergroup
4 MIN 049059	137814	28			Sandstone	Weathered basement	Amphitheatre Group, lower	Daml	Amphitheatre Group	Cobar Supergroup
5 MIN 039891	37S-1D	0		24 argillaceous Quartz Arenite	Quartz arenite	Weathered basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
6 MIN 039891	37S-1D	24			Sandstone	Weathered basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
7 MIN 039891	37S-1D	34.45		59 Argilaceous Siltstone with occasional cm fi	Siltstone and sandstone	Weathered basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
8 MIN 039891	37S-1D	59		.2 Argilaceous Siltstone with occasional cm fi		Weathered basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
9 MIN 039891	37S-1D	63.2		-	Shale	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
0 MIN 039891	37S-1D	67.2	113	.6 massive Quartz Arenite	Quartz arenite	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
1 MIN 039891	37S-1D	113.6	119	.6 Indurated shale Slate and Quartz Arenite w	Shale	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
2 MIN 039891	37S-1D	119.6	147	.4 Indurated chlorite shale Slate	Shale	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
3 MIN 039891	37S-1D	147.4	1	97 Quartz Arenite zones of breccia, trace py ga	Quartz arenite	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
4 MIN 039891	37S-1D	197			Shale	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
5 MIN 039891	37S-1D	241.5			Quartz arenite	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
6 MIN 039891	37S-1D	247.8	2	51 Quartz Arenite in alternance with chloritise	Quartz arenite	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
7 MIN 039891	37S-1D	251	260	.5 Alternance of quartz Crystal tuff and chlori	Crystal tuff	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
8 MIN 039891	37S-1D	260.5		81 Sandstone py po massive in places	Sandstone	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
9 MIN_039891	37S-1D	281		.8 Gritty Sandstone q Crystal tuff with Tuff ag		Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
0 MIN 039891	37S-1D	293.8		.7 sheared pp acid pyroclastic porphyry with o		Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
1 MIN 039891	37S-1D	294.7		.2 Quartz Arenite	Quartz arenite	Fresh basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
2 MIN 039891	37S-1D	300.2		.4 Q Crystal tuff agglomerate in parts. 5cm fra		Fresh basement	Shuttleton Rhyolite Member	Damss	Amphitheatre Group	Cobar Supergroup
3 MIN 039892	37S-1DWEDGE	332.3		47 Crystal tuff	Crystal tuff	Fresh basement	Shuttleton Rhyolite Member	Damss	Amphitheatre Group	Cobar Supergroup
4 MIN 039892	37S-1DWEDGE	352.47			Sandstone	Fresh basement	Shuttleton Rhyolite Member	Damss	Amphitheatre Group	Cobar Supergroup
5 MIN 039892		365.82			Volcaniclastic rock	Fresh basement	Shuttleton Rhyolite Member	Damss	Amphitheatre Group	Cobar Supergroup
6 MIN 039892		399.55			Sandstone	Fresh basement	Amphitheatre Group, upper	Damu	Amphitheatre Group	Cobar Supergroup
7 MIN 039892	37S-1DWEDGE	403.28			Sandstone	Fresh basement	Amphitheatre Group, upper	Damu	Amphitheatre Group	Cobar Supergroup
8 MIN 039893	37S-2D	403.28			Quartz arenite	Weathered basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup
	37S-2D	12.5		75 massive reddish pink mineral not classified		Weathered basement	Shume Formation	Dams	Amphitheatre Group	Cobar Supergroup

Lithology and stratigraphy data

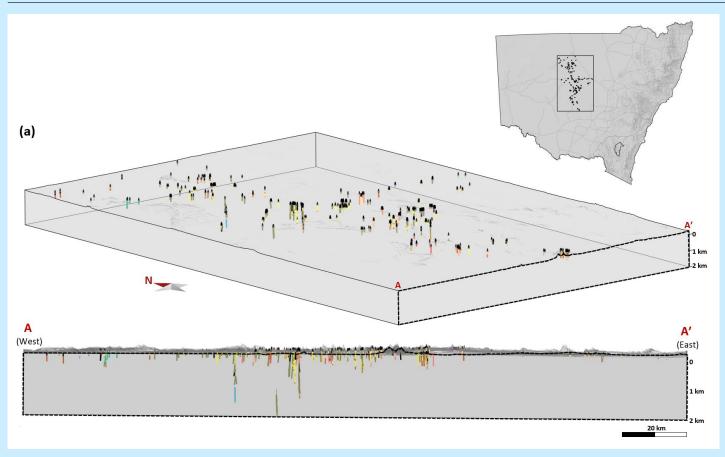
Using the NSW Seamless Geology dataset

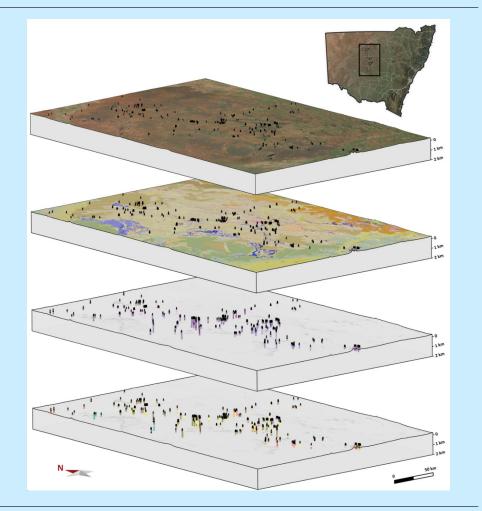

- Collar locations compared to surface and undercover rock unit information in NSW Seamless Geology dataset (version 2.3)
- Further rock unit (stratigraphic) information interpreted using:
 - drillhole downhole survey information (azimuth and dip)
 - rock unit structural information (bedding dip and strike, folds and faults)
- Mapping (and interpreted stratigraphy) subject to change with future releases of NSW Seamless Geology dataset



Lithology and stratigraphy data

Using drillhole material and HyLogger™ hyperspectral data

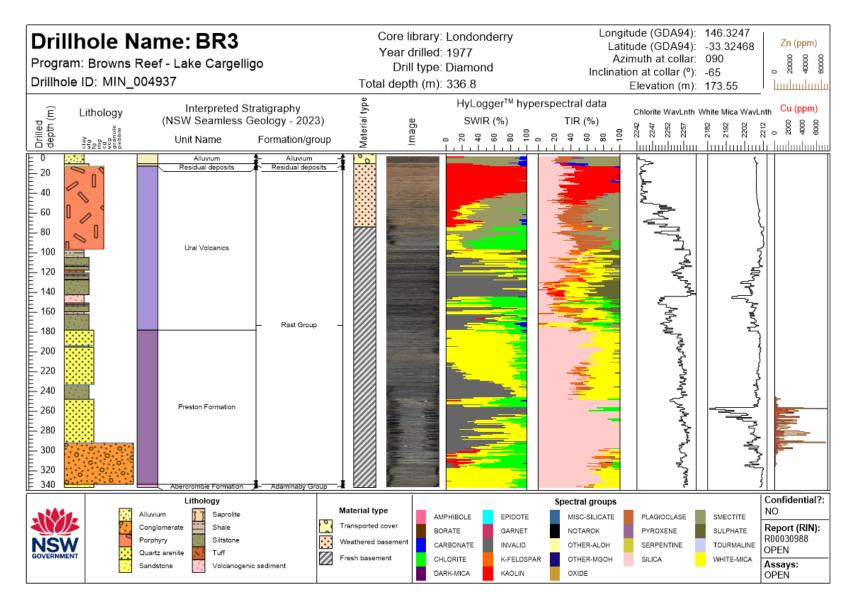




→ almost 50% of drillholes in this dataset are stored at Londonderry core library for examination

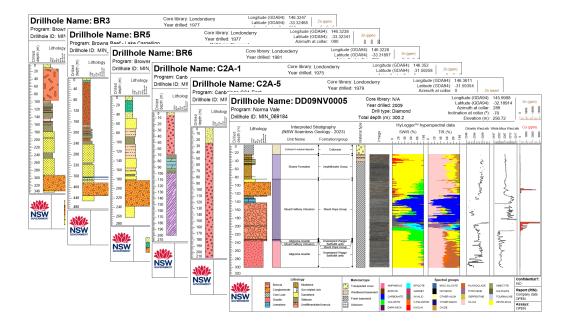
Cobar drillhole 3D projects

Source: Luke Mahoney (GSNSW)

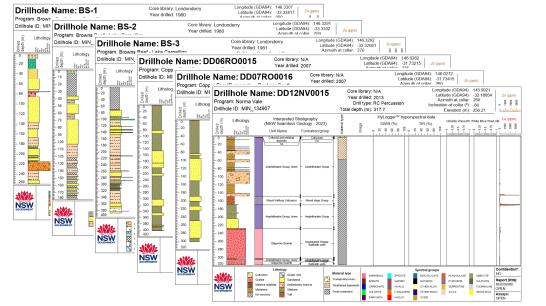

Cobar drillhole atlas

Cobar drillhole atlas

StraterTM software


- New drillhole data integrated using StraterTM software
- PDF output files
- Template set up can replicate outputs for any drillholes
- Other downhole information can be added – for example, different spectral scalars, geochemical data, petrophysics/rock properties

Cobar drillhole atlas

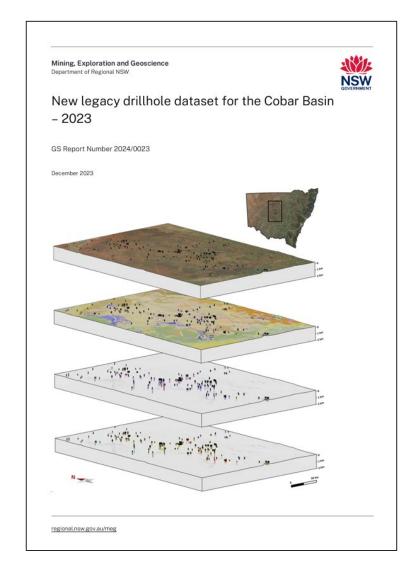

NSW GOVERNMENT

Drillholes with Hylogger™ data

 $\times 177$

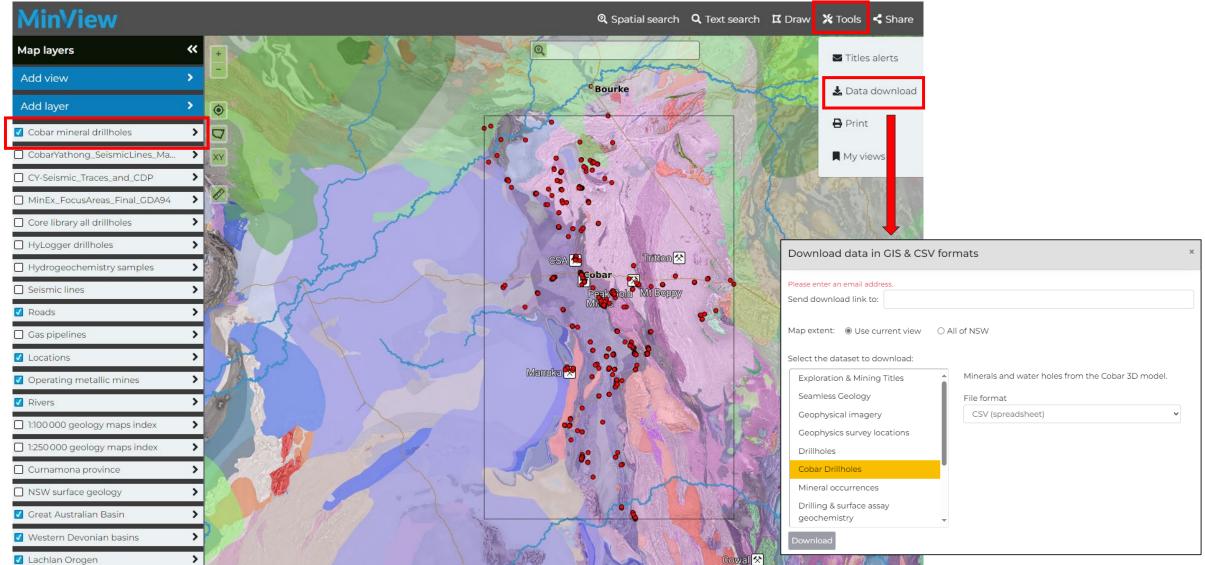
Drillholes without Hylogger™ data

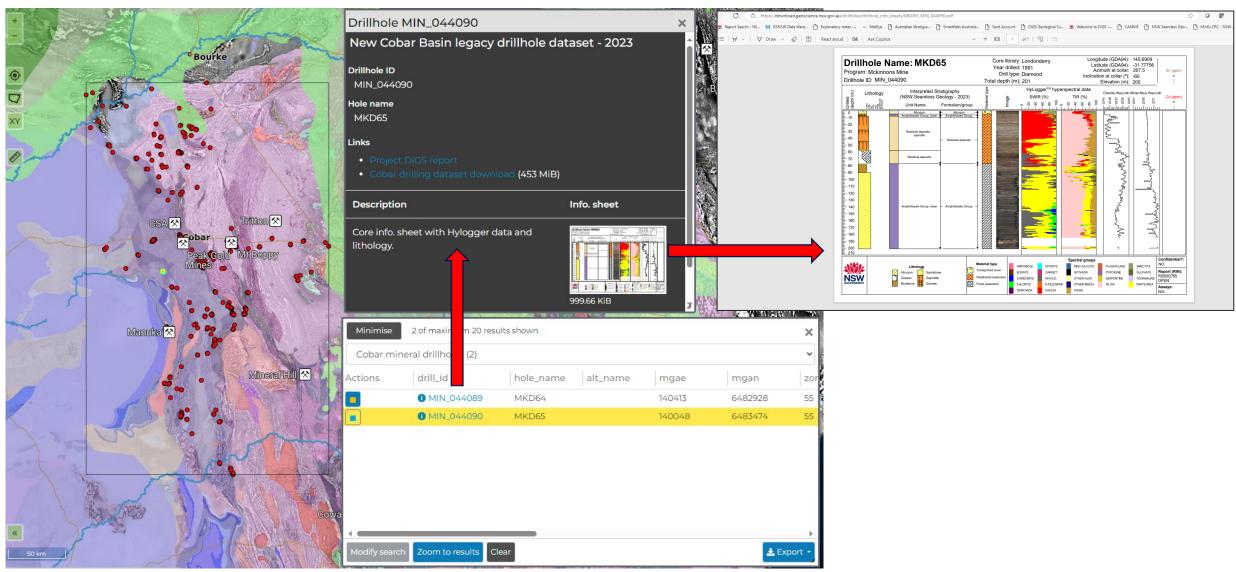
x 362


Accessing the data and products

MinView link

DIGS link


GS2024/0023



Back-up slides follow if web links on previous slide don't work

New Cobar Basin legacy drillhole dataset - 2023

R00035414 (GS2024/0023)

Chris Folkes
2024

X Collapse All X Deselect All Download

New Cobar Basin legacy drillhole dataset - 2023

O Cobar Basin

TENEMENT NAME / NUMBER
NA
LOCATIONS
Cobar Basin
MAP SHEETS
Louth #250=SH5509 Bourke #250=SH5510 Cobar #250=SH5514 Nymagee #250=SI5502 Cargelligo #250=SI5506
ABSTRACT

This report outlines a new dataset for legacy drillholes in the Cobar Basin region of New South Wales (NSW). This release updates and expands on an earlier dataset compiled in 2020 and includes the following information for 539 open file drillholes (compiled up to the 1st of August 2023):-Collar information 'spatial details and various drillhole information - Downhole lithology and stratigraphy data' the original lithology logs (depth intervals), lithology terms converted to the GSNSW lithology schema, depth to the base of transported cover and weathered basement, and interpreted stratigraphic intervals (based on the NSW Seamless Geology dataset) - Downhole survey data' where available, full downhole azimuth and inclination (dip) data - Downhole hyperspectral data (available for 177 drillholes): -- SWIR' short-wave Infrared spectra -- TIR' thermal infrared spectra -- VNIR' visible-to-near infrared spectra The new Cobar drillhole dataset has been used as input data to view various downhole information for the Cobar region. The StraterTM software program was used to create a standardised template that presents these multiple downhole datasets on one page. The combined information page for each drillhole can be exported/printed to produce a reference atlas for a suite of drillholes over an area of interest. Additionally, the Cobar drillhole dataset has been loaded into 3D projects in the GOCAD' Mining Suite and Geoscience ANALYST software packages. The drillhole datasets, reference atlas and 3D project files are available for download via MinView and DIGS (Digital Imaging Geological System).

Preview	Document Name	Size	Type	Pages	OCR	Select
100	New Cobar drillholes dataset report (D006218365)	4.0 MB	PDF	23	OCR	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	699.9 KB	H5	1	N/A	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	2.7 MB	DB	1	N/A	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	275.0 B	TXT	1	OCR	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	697.5 KB	H5	1	N/A	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	408.0 KB	DB	1	N/A	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	1.1 MB	H5	1	N/A	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	124.0 B	PROJECT	1	OCR	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	23.9 MB	DB	1	N/A	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	9.1 MB	DATA	1	N/A	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	697.0 KB	H5	1	N/A	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	2.2 MB	H5	1	N/A	~
	Cobar_Drillholes_GOCAD_GDA94_55 (D006218367)	43.3 KB	SPRJ	1	N/A	~
	Cobar collars 2023 (D110044210)	264.4 KB	TXT	1	N/A	~
	Cobar dhLITH 2023 (D110044211)	3.1 MB	TXT	1	OCR	~
	Cobar dhSURV 2023 (D110044212)	479.6 KB	TXT	1	N/A	~
	Cobar dhSWIR 2023 (D110044213)	4.2 MB	TXT	1	OCR	~
	Cobar dhTIR 2023 (D110044214)	5.1 MB	TXT	1	OCR	~
	Cobar dhVNIR 2023 (D110044215)	3.5 MB	TXT	1	OCR	~
	Cobar Drillholes Geoscience ANALYST GDA94 55 August 2023 (D110044216)	3.8 MB	GEOH5	1	OCR	~
E.M.	Drillhole Atlas - HyLogged drillholes_combined (D110044217)	23.9 MB	PDF	201	N/A	~
	Drillhole Atlas - Non-HyLogged drillholes - combined	23.4 MB	PDF	366	N/A	~